srsLTE/srsue/hdr/phy/nr/state.h

561 lines
18 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSRAN_STATE_H
#define SRSRAN_STATE_H
#include "../phy_metrics.h"
#include "srsran/adt/circular_array.h"
#include "srsran/common/common.h"
#include "srsran/interfaces/ue_nr_interfaces.h"
#include "srsran/srsran.h"
#include <array>
#include <mutex>
#include <vector>
namespace srsue {
namespace nr {
class state
{
private:
struct pending_ul_grant_t {
bool enable;
uint32_t pid;
srsran_sch_cfg_nr_t sch_cfg;
};
srsran::circular_array<pending_ul_grant_t, TTIMOD_SZ> pending_ul_grant = {};
mutable std::mutex pending_ul_grant_mutex;
struct pending_dl_grant_t {
bool enable;
uint32_t pid;
srsran_sch_cfg_nr_t sch_cfg;
srsran_harq_ack_resource_t ack_resource;
};
srsran::circular_array<pending_dl_grant_t, TTIMOD_SZ> pending_dl_grant = {};
mutable std::mutex pending_dl_grant_mutex;
srsran::circular_array<srsran_pdsch_ack_nr_t, TTIMOD_SZ> pending_ack = {};
mutable std::mutex pending_ack_mutex;
/// Metrics section
info_metrics_t info_metrics = {};
sync_metrics_t sync_metrics = {};
ch_metrics_t ch_metrics = {};
dl_metrics_t dl_metrics = {};
ul_metrics_t ul_metrics = {};
mutable std::mutex metrics_mutex;
/// CSI-RS measurements
std::mutex csi_measurements_mutex;
std::array<srsran_csi_channel_measurements_t, SRSRAN_CSI_MAX_NOF_RESOURCES> csi_measurements = {};
/// TRS measurements
mutable std::mutex trs_measurements_mutex;
srsran_csi_trs_measurements_t trs_measurements = {};
/// Other measurements
std::atomic<float> ul_ext_cfo_hz = {0.0f};
/**
* @brief Resets all metrics (unprotected)
*/
void reset_metrics_()
{
sync_metrics.reset();
ch_metrics.reset();
dl_metrics.reset();
ul_metrics.reset();
}
public:
mac_interface_phy_nr* stack = nullptr;
/// Physical layer user configuration
phy_args_nr_t args = {};
/// Semaphore for aligning UL work
srsran::tti_semaphore<void*> dl_ul_semaphore;
state()
{
// Hard-coded values, this should be set when the measurements take place
csi_measurements[0].K_csi_rs = 1;
csi_measurements[0].nof_ports = 1;
csi_measurements[1].K_csi_rs = 4;
csi_measurements[1].nof_ports = 1;
}
/**
* @brief Stores a received UL DCI into the pending UL grant list
* @param cfg Physical layer configuration object
* @param slot_rx The TTI in which the grant was received
* @param dci_ul The UL DCI message to store
*/
void set_ul_pending_grant(const srsran::phy_cfg_nr_t& cfg,
const srsran_slot_cfg_t& slot_rx,
const srsran_dci_ul_nr_t& dci_ul)
{
// Convert UL DCI to grant
srsran_sch_cfg_nr_t pusch_cfg = {};
if (not cfg.get_pusch_cfg(slot_rx, dci_ul, pusch_cfg)) {
std::array<char, 512> str;
srsran_dci_ul_nr_to_str(NULL, &dci_ul, str.data(), str.size());
ERROR("Computing UL grant %s", str.data());
return;
}
// Calculate Transmit TTI
uint32_t tti_tx = TTI_ADD(slot_rx.idx, pusch_cfg.grant.k);
// Scope mutex to protect read/write the list
std::lock_guard<std::mutex> lock(pending_ul_grant_mutex);
// Save entry
pending_ul_grant_t& pending_grant = pending_ul_grant[tti_tx];
pending_grant.sch_cfg = pusch_cfg;
pending_grant.pid = dci_ul.pid;
pending_grant.enable = true;
}
/**
* @brief Checks the UL pending grant list if there is any grant to transmit for the given transmit TTI
* @param tti_tx Current transmit TTI
* @param sch_cfg Provides the Shared Channel configuration for the PUSCH transmission
* @param pid Provides the HARQ process identifier
* @return true if there is a pending grant for the given TX tti, false otherwise
*/
bool get_ul_pending_grant(uint32_t tti_tx, srsran_sch_cfg_nr_t& pusch_cfg, uint32_t& pid)
{
// Scope mutex to protect read/write the list
std::lock_guard<std::mutex> lock(pending_ul_grant_mutex);
// Select entry
pending_ul_grant_t& pending_grant = pending_ul_grant[tti_tx];
// If the entry is not active, just return
if (!pending_grant.enable) {
return false;
}
// Load shared channel configuration and PID
pusch_cfg = pending_grant.sch_cfg;
pid = pending_grant.pid;
// Reset entry
pending_grant.enable = false;
return true;
}
/**
* @brief Stores a received DL DCI into the pending DL grant list
* @param cfg Physical layer configuration object
* @param tti_rx The TTI in which the grant was received
* @param dci_dl The DL DCI message to store
*/
void
set_dl_pending_grant(const srsran::phy_cfg_nr_t& cfg, const srsran_slot_cfg_t& slot, const srsran_dci_dl_nr_t& dci_dl)
{
// Convert DL DCI to grant
srsran_sch_cfg_nr_t pdsch_cfg = {};
if (not cfg.get_pdsch_cfg(slot, dci_dl, pdsch_cfg)) {
std::array<char, 512> str;
srsran_dci_dl_nr_to_str(NULL, &dci_dl, str.data(), str.size());
ERROR("Computing DL grant %s", str.data());
return;
}
// Calculate DL DCI to PDSCH ACK resource
srsran_harq_ack_resource_t ack_resource = {};
if (not cfg.get_pdsch_ack_resource(dci_dl, ack_resource)) {
ERROR("Computing UL ACK resource");
return;
}
// Calculate Receive TTI
uint32_t tti_rx = TTI_ADD(slot.idx, pdsch_cfg.grant.k);
// Scope mutex to protect read/write the list
std::lock_guard<std::mutex> lock(pending_dl_grant_mutex);
// Save entry
pending_dl_grant_t& pending_grant = pending_dl_grant[tti_rx];
pending_grant.sch_cfg = pdsch_cfg;
pending_grant.ack_resource = ack_resource;
pending_grant.pid = dci_dl.pid;
pending_grant.enable = true;
}
/**
* @brief Checks the DL pending grant list if there is any grant to receive for the given receive TTI
* @param tti_rx Current receive TTI
* @param sch_cfg Provides the Shared Channel configuration for the PDSCH transmission
* @param ack_resource Provides the UL ACK resource
* @param pid Provides the HARQ process identifier
* @return true if there is a pending grant for the given TX tti, false otherwise
*/
bool get_dl_pending_grant(uint32_t tti_rx,
srsran_sch_cfg_nr_t& pdsch_cfg,
srsran_harq_ack_resource_t& ack_resource,
uint32_t& pid)
{
// Scope mutex to protect read/write the list
std::lock_guard<std::mutex> lock(pending_dl_grant_mutex);
// Select entry
pending_dl_grant_t& pending_grant = pending_dl_grant[tti_rx];
// If the entry is not active, just return
if (!pending_grant.enable) {
return false;
}
// Load shared channel configuration and resource
pdsch_cfg = pending_grant.sch_cfg;
ack_resource = pending_grant.ack_resource;
pid = pending_grant.pid;
// Reset entry
pending_grant.enable = false;
return true;
}
/**
* @brief Stores a pending PDSCH ACK into the pending ACK list
* @param tti_rx The TTI in which the PDSCH transmission was received
* @param dci_dl The DL DCI message to store
*/
void set_pending_ack(const uint32_t& tti_rx, const srsran_harq_ack_resource_t& ack_resource, const bool& crc_ok)
{
// Calculate Receive TTI
uint32_t tti_tx = TTI_ADD(tti_rx, ack_resource.k1);
// Prepare ACK information
srsran_harq_ack_m_t ack_m = {};
ack_m.resource = ack_resource;
ack_m.value[0] = crc_ok ? 1 : 0;
ack_m.present = true;
// Scope mutex to protect read/write the list
std::lock_guard<std::mutex> lock(pending_ack_mutex);
// Select UL transmission time resource
srsran_pdsch_ack_nr_t& ack = pending_ack[tti_tx];
ack.nof_cc = 1;
// Insert PDSCH transmission information
if (srsran_harq_ack_insert_m(&ack, &ack_m) < SRSRAN_SUCCESS) {
ERROR("Error inserting ACK m value for Tx slot %d", tti_tx);
}
}
bool get_pending_ack(const uint32_t& tti_tx, srsran_pdsch_ack_nr_t& pdsch_ack)
{
// Scope mutex to protect read/write the list
std::lock_guard<std::mutex> lock(pending_ack_mutex);
// Select UL transmission time resource
srsran_pdsch_ack_nr_t& ack = pending_ack[tti_tx];
// No pending grant was set
if (ack.nof_cc == 0) {
return false;
}
// Copy data
pdsch_ack = ack;
// Reset list entry
ack = {};
return true;
}
void reset()
{
clear_pending_grants();
reset_metrics();
reset_measurements();
}
bool has_valid_sr_resource(const srsran::phy_cfg_nr_t& cfg, uint32_t sr_id)
{
for (const srsran_pucch_nr_sr_resource_t& r : cfg.pucch.sr_resources) {
if (r.configured && r.sr_id == sr_id) {
return true;
}
}
return false;
}
void clear_pending_grants()
{
// Clear all PDSCH assignments and PUSCH grants
// Scope mutex to protect read/write each list
{
std::lock_guard<std::mutex> lock(pending_ul_grant_mutex);
pending_ul_grant = {};
}
{
std::lock_guard<std::mutex> lock(pending_dl_grant_mutex);
pending_dl_grant = {};
}
{
std::lock_guard<std::mutex> lock(pending_ack_mutex);
pending_ack = {};
}
}
void get_pending_sr(const srsran::phy_cfg_nr_t& cfg, const uint32_t& tti, srsran_uci_data_nr_t& uci_data)
{
// Calculate all SR opportunities in the given TTI
uint32_t sr_resource_id[SRSRAN_PUCCH_MAX_NOF_SR_RESOURCES] = {};
int n = srsran_ue_ul_nr_sr_send_slot(cfg.pucch.sr_resources, tti, sr_resource_id);
if (n < SRSRAN_SUCCESS) {
ERROR("Calculating SR opportunities");
return;
}
// Initialise counters
uint32_t sr_count_all = (uint32_t)n; // Number of opportunities in this TTI
uint32_t sr_count_positive = 0;
// Iterate all opportunities and check if there is a pending SR
for (uint32_t i = 0; i < sr_count_all; i++) {
// Extract SR identifier
uint32_t sr_id = cfg.pucch.sr_resources[sr_resource_id[i]].sr_id;
// Check if the SR resource ID is pending
if (args.fixed_sr.count(sr_id) > 0 ||
stack->sr_opportunity(tti, sr_id, false, pending_ul_grant[TTI_TX(tti)].enable)) {
// Count it as present
sr_count_positive++;
}
}
// Configure SR fields in UCI data
uci_data.cfg.pucch.sr_resource_id = sr_resource_id[0];
uci_data.cfg.o_sr = srsran_ra_ul_nr_nof_sr_bits(sr_count_all);
uci_data.cfg.sr_positive_present = sr_count_positive > 0;
uci_data.value.sr = sr_count_positive;
}
void
get_periodic_csi(const srsran::phy_cfg_nr_t& cfg, const srsran_slot_cfg_t& slot_cfg, srsran_uci_data_nr_t& uci_data)
{
// Generate report configurations
int n = srsran_csi_reports_generate(&cfg.csi, &slot_cfg, uci_data.cfg.csi);
if (n > SRSRAN_SUCCESS) {
uci_data.cfg.nof_csi = n;
}
// Quantify reports from measurements
n = srsran_csi_reports_quantify(uci_data.cfg.csi, csi_measurements.data(), uci_data.value.csi);
if (n > SRSRAN_SUCCESS) {
uci_data.cfg.nof_csi = n;
}
// Set fix wideband CQI if it is not zero nor greater than 15
if (args.fix_wideband_cqi != 0 && args.fix_wideband_cqi < 15) {
for (uint32_t i = 0; i < uci_data.cfg.nof_csi; i++) {
if (uci_data.cfg.csi[i].cfg.quantity == SRSRAN_CSI_REPORT_QUANTITY_CRI_RI_PMI_CQI &&
uci_data.cfg.csi[i].cfg.freq_cfg == SRSRAN_CSI_REPORT_FREQ_WIDEBAND) {
uci_data.value.csi[i].wideband_cri_ri_pmi_cqi.cqi = args.fix_wideband_cqi;
}
}
}
uci_data.cfg.pucch.rnti = stack->get_ul_sched_rnti_nr(slot_cfg.idx).id;
}
/**
* @brief Sets time and frequency synchronization metrics
* @param m Metrics object
*/
void set_info_metrics(const info_metrics_t& m)
{
std::lock_guard<std::mutex> lock(metrics_mutex);
info_metrics = m;
}
/**
* @brief Sets time and frequency synchronization metrics
* @param m Metrics object
*/
void set_sync_metrics(const sync_metrics_t& m)
{
std::lock_guard<std::mutex> lock(metrics_mutex);
sync_metrics.set(m);
}
/**
* @brief Sets DL channel metrics from received CSI-RS resources
* @param m Metrics object
*/
void set_channel_metrics(const ch_metrics_t& m)
{
std::lock_guard<std::mutex> lock(metrics_mutex);
ch_metrics.set(m);
}
/**
* @brief Sets DL metrics of a given PDSCH transmission
* @param m Metrics object
*/
void set_dl_metrics(const dl_metrics_t& m)
{
std::lock_guard<std::mutex> lock(metrics_mutex);
dl_metrics.set(m);
}
/**
* @brief Sets UL metrics of a given PUSCH transmission
* @param m Metrics object
*/
void set_ul_metrics(const ul_metrics_t& m)
{
std::lock_guard<std::mutex> lock(metrics_mutex);
ul_metrics.set(m);
}
/**
* @brief Resets all metrics (protected)
*/
void reset_metrics()
{
std::lock_guard<std::mutex> lock(metrics_mutex);
reset_metrics_();
}
/**
* @brief Appends the NR PHY metrics to the general metric hub
* @param m PHY Metrics object
*/
void get_metrics(phy_metrics_t& m)
{
std::lock_guard<std::mutex> lock(metrics_mutex);
uint32_t cc = m.nof_active_cc;
m.info[cc] = info_metrics;
m.sync[cc] = sync_metrics;
m.ch[cc] = ch_metrics;
m.dl[cc] = dl_metrics;
m.ul[cc] = ul_metrics;
m.nof_active_cc++;
// Reset all metrics
reset_metrics_();
}
/**
* @brief Resets all PHY measurements (protected)
*/
void reset_measurements()
{
std::lock_guard<std::mutex> lock(csi_measurements_mutex);
csi_measurements = {};
}
/**
* @brief Processes a new NZP-CSI-RS channel measurement
* @param cfg Physical layer configuration object
* @param new_measure New measurement
* @param resource_set_id NZP-CSI-RS resource set identifier used for the channel measurement
*/
void new_nzp_csi_rs_channel_measurement(const srsran::phy_cfg_nr_t& cfg,
const srsran_csi_channel_measurements_t& new_measure,
uint32_t resource_set_id)
{
std::lock_guard<std::mutex> lock(csi_measurements_mutex);
if (srsran_csi_new_nzp_csi_rs_measurement(
cfg.csi.csi_resources, csi_measurements.data(), &new_measure, resource_set_id) < SRSRAN_SUCCESS) {
ERROR("Error processing new NZP-CSI-RS");
return;
}
}
/**
* @brief Processes a new Tracking Reference Signal (TRS) measurement
* @param new_measure New measurement
* @param cfg Physical layer configuration object
* @param resource_set_id NZP-CSI-RS resource set identifier used for the channel measurement if it is configured from
* a NZP-CSI-RS
* @param K_csi_rs Number of NZP-CSI-RS resources used for the measurement, set to 0 if another type of signal is
* measured (i.e. SSB)
*/
void new_csi_trs_measurement(const srsran_csi_trs_measurements_t& new_meas,
const srsran::phy_cfg_nr_t& cfg,
uint32_t resource_set_id = 0,
uint32_t K_csi_rs = 0)
{
// Compute channel metrics and push it
ch_metrics_t new_ch_metrics = {};
new_ch_metrics.sinr = new_meas.snr_dB;
new_ch_metrics.rsrp = new_meas.rsrp_dB;
new_ch_metrics.rsrq = 0.0f; // Not supported
new_ch_metrics.rssi = 0.0f; // Not supported
new_ch_metrics.sync_err = new_meas.delay_us;
set_channel_metrics(new_ch_metrics);
// Compute synch metrics and report it to the PHY state
sync_metrics_t new_sync_metrics = {};
new_sync_metrics.cfo = new_meas.cfo_hz + ul_ext_cfo_hz;
set_sync_metrics(new_sync_metrics);
// Convert to CSI channel measurement and report new NZP-CSI-RS measurement to the PHY state
srsran_csi_channel_measurements_t measurements = {};
measurements.cri = 0;
measurements.wideband_rsrp_dBm = new_meas.rsrp_dB;
measurements.wideband_epre_dBm = new_meas.epre_dB;
measurements.wideband_snr_db = new_meas.snr_dB;
measurements.nof_ports = 1; // Other values are not supported
measurements.K_csi_rs = K_csi_rs;
new_nzp_csi_rs_channel_measurement(cfg, measurements, resource_set_id);
// Update tracking information
trs_measurements_mutex.lock();
trs_measurements.rsrp_dB = SRSRAN_VEC_SAFE_EMA(new_meas.rsrp_dB, trs_measurements.rsrp_dB, args.trs_epre_ema_alpha);
trs_measurements.epre_dB = SRSRAN_VEC_SAFE_EMA(new_meas.epre_dB, trs_measurements.epre_dB, args.trs_rsrp_ema_alpha);
trs_measurements.snr_dB = SRSRAN_VEC_SAFE_EMA(new_meas.snr_dB, trs_measurements.snr_dB, args.trs_sinr_ema_alpha);
// Consider CFO measurement invalid if the SNR is negative. In this case, set CFO to 0.
if (new_meas.snr_dB > 0.0f) {
trs_measurements.cfo_hz = SRSRAN_VEC_SAFE_EMA(new_meas.cfo_hz, trs_measurements.cfo_hz, args.trs_cfo_ema_alpha);
}
trs_measurements.nof_re++;
trs_measurements_mutex.unlock();
}
float get_dl_cfo()
{
std::lock_guard<std::mutex> lock(trs_measurements_mutex);
return trs_measurements.cfo_hz;
}
float get_ul_cfo() const
{
std::lock_guard<std::mutex> lock(trs_measurements_mutex);
return trs_measurements.cfo_hz + ul_ext_cfo_hz;
}
void set_ul_ext_cfo(float ext_cfo_hz) { ul_ext_cfo_hz = ext_cfo_hz; }
};
} // namespace nr
} // namespace srsue
#endif // SRSRAN_STATE_H