git-svn-id: svn://svn.code.sf.net/p/chibios/svn/trunk@13784 27425a3e-05d8-49a3-a47f-9c15f0e5edd8
This commit is contained in:
Giovanni Di Sirio 2020-07-24 08:57:39 +00:00
parent 95b934e07c
commit eb3cf6a1f6
3 changed files with 209 additions and 126 deletions

View File

@ -34,23 +34,27 @@
#if STM32_ADC_COMPACT_SAMPLES == TRUE
/* Compact type dual mode, 2x8-bit.*/
#define ADC12_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD)
#define ADC3_BDMA_SIZE (STM32_BDMA_CR_MSIZE_BYTE | STM32_BDMA_CR_PSIZE_BYTE)
#define ADC_DMA_DAMDF ADC_CCR_DAMDF_BYTE
#else /* STM32_ADC_COMPACT_SAMPLES == FALSE */
/* Large type dual mode, 2x16bit.*/
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_WORD | STM32_DMA_CR_PSIZE_WORD)
#define ADC12_DMA_SIZE (STM32_DMA_CR_MSIZE_WORD | STM32_DMA_CR_PSIZE_WORD)
#define ADC3_BDMA_SIZE (STM32_BDMA_CR_MSIZE_HWORD | STM32_BDMA_CR_PSIZE_HWORD)
#define ADC_DMA_DAMDF ADC_CCR_DAMDF_HWORD
#endif /* !STM32_ADC_COMPACT_SAMPLES */
#else /* STM32_ADC_DUAL_MODE == FALSE */
#if STM32_ADC_COMPACT_SAMPLES
/* Compact type single mode, 8-bit.*/
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_PSIZE_BYTE)
#define ADC12_DMA_SIZE (STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_PSIZE_BYTE)
#define ADC3_BDMA_SIZE (STM32_BDMA_CR_MSIZE_BYTE | STM32_BDMA_CR_PSIZE_BYTE)
#define ADC_DMA_DAMDF ADC_CCR_DAMDF_DISABLED
#else /* STM32_ADC_COMPACT_SAMPLES == FALSE */
/* Large type single mode, 16-bit.*/
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD)
#define ADC12_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD)
#define ADC3_BDMA_SIZE (STM32_BDMA_CR_MSIZE_HWORD | STM32_BDMA_CR_PSIZE_HWORD)
#define ADC_DMA_DAMDF ADC_CCR_DAMDF_DISABLED
#endif /* STM32_ADC_COMPACT_SAMPLES == FALSE */
#endif /* STM32_ADC_DUAL_MODE == FALSE */
@ -90,7 +94,9 @@ static void adc_lld_vreg_on(ADCDriver *adcp) {
adcp->adcm->CR = ADC_CR_ADVREGEN;
#if STM32_ADC_DUAL_MODE
adcp->adcs->CR = ADC_CR_ADVREGEN;
if (&ADCD1 == adcp) {
adcp->adcs->CR = ADC_CR_ADVREGEN;
}
#endif
osalSysPolledDelayX(OSAL_US2RTC(STM32_SYS_CK, 10U));
}
@ -104,7 +110,9 @@ static void adc_lld_vreg_off(ADCDriver *adcp) {
adcp->adcm->CR = ADC_CR_DEEPPWD;
#if STM32_ADC_DUAL_MODE
adcp->adcs->CR = ADC_CR_DEEPPWD;
if (&ADCD1 == adcp) {
adcp->adcs->CR = ADC_CR_DEEPPWD;
}
#endif
}
@ -120,10 +128,12 @@ static void adc_lld_analog_on(ADCDriver *adcp) {
while ((adcp->adcm->ISR & ADC_ISR_ADRDY) == 0U)
;
#if STM32_ADC_DUAL_MODE
adcp->adcs->ISR = ADC_ISR_ADRDY;
adcp->adcs->CR |= ADC_CR_ADEN;
while ((adcp->adcs->ISR & ADC_ISR_ADRDY) == 0U)
;
if (&ADCD1 == adcp) {
adcp->adcs->ISR = ADC_ISR_ADRDY;
adcp->adcs->CR |= ADC_CR_ADEN;
while ((adcp->adcs->ISR & ADC_ISR_ADRDY) == 0U)
;
}
#endif
}
@ -138,9 +148,11 @@ static void adc_lld_analog_off(ADCDriver *adcp) {
while ((adcp->adcm->CR & ADC_CR_ADDIS) != 0U)
;
#if STM32_ADC_DUAL_MODE
adcp->adcs->CR |= ADC_CR_ADDIS;
while ((adcp->adcs->CR & ADC_CR_ADDIS) != 0U)
;
if (&ADCD1 == adcp) {
adcp->adcs->CR |= ADC_CR_ADDIS;
while ((adcp->adcs->CR & ADC_CR_ADDIS) != 0U)
;
}
#endif
}
@ -160,14 +172,16 @@ static void adc_lld_calibrate(ADCDriver *adcp) {
while ((adcp->adcm->CR & ADC_CR_ADCAL) != 0U)
;
#if STM32_ADC_DUAL_MODE
osalDbgAssert(adcp->adcs->CR == ADC_CR_ADVREGEN, "invalid register state");
if (&ADCD1 == adcp) {
osalDbgAssert(adcp->adcs->CR == ADC_CR_ADVREGEN, "invalid register state");
adcp->adcs->CR &= ~(ADC_CR_ADCALDIF | ADC_CR_ADCALLIN);
adcp->adcs->CR |= adcp->config->calibration & (ADC_CR_ADCALDIF |
ADC_CR_ADCALLIN);
adcp->adcs->CR |= ADC_CR_ADCAL;
while ((adcp->adcs->CR & ADC_CR_ADCAL) != 0U)
;
adcp->adcs->CR &= ~(ADC_CR_ADCALDIF | ADC_CR_ADCALLIN);
adcp->adcs->CR |= adcp->config->calibration & (ADC_CR_ADCALDIF |
ADC_CR_ADCALLIN);
adcp->adcs->CR |= ADC_CR_ADCAL;
while ((adcp->adcs->CR & ADC_CR_ADCAL) != 0U)
;
}
#endif
}
@ -186,6 +200,7 @@ static void adc_lld_stop_adc(ADCDriver *adcp) {
adcp->adcm->PCSEL = 0U;
}
#if (STM32_ADC_USE_ADC12 == TRUE) || defined(__DOXYGEN__)
/**
* @brief ADC DMA service routine.
*
@ -215,7 +230,9 @@ static void adc_lld_serve_dma_interrupt(ADCDriver *adcp, uint32_t flags) {
}
}
}
#endif /* STM32_ADC_USE_ADC12 == TRUE */
#if (STM32_ADC_USE_ADC3 == TRUE) || defined(__DOXYGEN__)
/**
* @brief ADC BDMA service routine.
*
@ -245,6 +262,7 @@ static void adc_lld_serve_bdma_interrupt(ADCDriver *adcp, uint32_t flags) {
}
}
}
#endif /* STM32_ADC_USE_ADC3 == TRUE */
/**
* @brief ADC IRQ service routine.
@ -295,11 +313,11 @@ OSAL_IRQ_HANDLER(STM32_ADC12_HANDLER) {
OSAL_IRQ_PROLOGUE();
isr = ADC1->ISR;
#if STM32_ADC_DUAL_MODE == TRUE
#if STM32_ADC_DUAL_MODE
isr |= ADC2->ISR;
#endif
ADC1->ISR = isr;
#if STM32_ADC_DUAL_MODE == TRUE
#if STM32_ADC_DUAL_MODE
ADC2->ISR = isr;
#endif
#if defined(STM32_ADC_ADC12_IRQ_HOOK)
@ -353,7 +371,7 @@ void adc_lld_init(void) {
ADCD1.adcs = ADC2;
#endif
ADCD1.data.dma = NULL;
ADCD1.dmamode = ADC_DMA_SIZE |
ADCD1.dmamode = ADC12_DMA_SIZE |
STM32_DMA_CR_PL(STM32_ADC_ADC12_DMA_PRIORITY) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
@ -367,11 +385,11 @@ void adc_lld_init(void) {
ADCD3.adcc = ADC3_COMMON;
ADCD3.adcm = ADC3;
ADCD3.data.bdma = NULL;
ADCD3.dmamode = ADC_DMA_SIZE |
STM32_DMA_CR_PL(STM32_ADC_ADC3_DMA_PRIORITY) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
ADCD3.dmamode = ADC3_BDMA_SIZE |
STM32_BDMA_CR_PL(STM32_ADC_ADC3_DMA_PRIORITY) |
STM32_BDMA_CR_DIR_P2M |
STM32_BDMA_CR_MINC | STM32_BDMA_CR_TCIE |
STM32_BDMA_CR_TEIE;
nvicEnableVector(STM32_ADC3_NUMBER, STM32_ADC_ADC3_IRQ_PRIORITY);
#endif /* STM32_ADC_USE_ADC3 == TRUE */
@ -386,7 +404,7 @@ void adc_lld_init(void) {
#if STM32_ADC_USE_ADC3 == TRUE
rccEnableADC3(true);
rccResetADC3();
ADC3_COMMON->CCR = STM32_ADC_ADC3_CLOCK_MODE | ADC_DMA_DAMDF;
ADC3_COMMON->CCR = STM32_ADC_ADC3_CLOCK_MODE;
rccDisableADC3();
#endif
#endif
@ -417,6 +435,21 @@ void adc_lld_start(ADCDriver *adcp) {
osalDbgAssert(adcp->data.dma != NULL, "unable to allocate stream");
rccEnableADC12(true);
dmaSetRequestSource(adcp->data.dma, STM32_DMAMUX1_ADC1);
/* Setting DMA peripheral-side pointer.*/
#if STM32_ADC_DUAL_MODE
dmaStreamSetPeripheral(adcp->data.dma, &adcp->adcc->CDR);
#else
dmaStreamSetPeripheral(adcp->data.dma, &adcp->adcm->DR);
#endif
/* Differential channels setting.*/
#if STM32_ADC_DUAL_MODE
adcp->adcm->DIFSEL = adcp->config->difsel;
adcp->adcs->DIFSEL = adcp->config->difsel;
#else
adcp->adcm->DIFSEL = adcp->config->difsel;
#endif
}
#endif /* STM32_ADC_USE_ADC12 == TRUE */
@ -429,24 +462,15 @@ void adc_lld_start(ADCDriver *adcp) {
osalDbgAssert(adcp->data.bdma != NULL, "unable to allocate stream");
rccEnableADC3(true);
bdmaSetRequestSource(adcp->data.bdma, STM32_DMAMUX2_ADC3_REQ);
/* Setting DMA peripheral-side pointer.*/
bdmaStreamSetPeripheral(adcp->data.bdma, &adcp->adcm->DR);
/* Differential channels setting.*/
adcp->adcm->DIFSEL = adcp->config->difsel;
}
#endif /* STM32_ADC_USE_ADC3 == TRUE */
/* Setting DMA peripheral-side pointer.*/
#if STM32_ADC_DUAL_MODE == TRUE
dmaStreamSetPeripheral(adcp->data.dma, &adcp->adcc->CDR);
#else
dmaStreamSetPeripheral(adcp->data.dma, &adcp->adcm->DR);
#endif
/* Differential channels setting.*/
#if STM32_ADC_DUAL_MODE == TRUE
adcp->adcm->DIFSEL = adcp->config->difsel;
adcp->adcs->DIFSEL = adcp->config->difsel;
#else
adcp->adcm->DIFSEL = adcp->config->difsel;
#endif
/* Master ADC calibration.*/
adc_lld_vreg_on(adcp);
adc_lld_calibrate(adcp);
@ -512,7 +536,7 @@ void adc_lld_stop(ADCDriver *adcp) {
adcp->data.bdma = NULL;
/* Resetting CCR options except default ones.*/
adcp->adcc->CCR = STM32_ADC_ADC3_CLOCK_MODE | ADC_DMA_DAMDF;
adcp->adcc->CCR = STM32_ADC_ADC3_CLOCK_MODE;
rccDisableADC3();
}
#endif
@ -529,104 +553,147 @@ void adc_lld_stop(ADCDriver *adcp) {
void adc_lld_start_conversion(ADCDriver *adcp) {
uint32_t dmamode, cfgr;
const ADCConversionGroup *grpp = adcp->grpp;
#if STM32_ADC_USE_ADC12 == TRUE
#if STM32_ADC_DUAL_MODE
uint32_t ccr = grpp->ccr & ~(ADC_CCR_CKMODE_MASK | ADC_CCR_DAMDF_MASK);
uint32_t ccr;
#endif
if (&ADCD1 == adcp) {
#if STM32_ADC_DUAL_MODE
ccr = grpp->ccr & ~(ADC_CCR_CKMODE_MASK | ADC_CCR_DAMDF_MASK);
osalDbgAssert(!STM32_ADC_DUAL_MODE || ((grpp->num_channels & 1) == 0),
"odd number of channels in dual mode");
#endif
osalDbgAssert(!STM32_ADC_DUAL_MODE || ((grpp->num_channels & 1) == 0),
"odd number of channels in dual mode");
/* Calculating control registers values.*/
dmamode = adcp->dmamode;
if (grpp->circular) {
dmamode |= STM32_DMA_CR_CIRC;
cfgr = grpp->cfgr | ADC_CFGR_DMNGT_CIRCULAR;
if (adcp->depth > 1) {
/* If circular buffer depth > 1, then the half transfer interrupt
is enabled in order to allow streaming processing.*/
dmamode |= STM32_DMA_CR_HTIE;
/* Calculating control registers values.*/
dmamode = adcp->dmamode;
if (grpp->circular) {
dmamode |= STM32_DMA_CR_CIRC;
cfgr = grpp->cfgr | ADC_CFGR_DMNGT_CIRCULAR;
if (adcp->depth > 1) {
/* If circular buffer depth > 1, then the half transfer interrupt
is enabled in order to allow streaming processing.*/
dmamode |= STM32_DMA_CR_HTIE;
}
else {
cfgr = grpp->cfgr | ADC_CFGR_DMNGT_ONESHOT;
}
}
else {
cfgr = grpp->cfgr | ADC_CFGR_DMNGT_ONESHOT;
}
}
/* DMA setup.*/
dmaStreamSetMemory0(adcp->data.dma, adcp->samples);
/* DMA setup.*/
dmaStreamSetMemory0(adcp->data.dma, adcp->samples);
#if STM32_ADC_DUAL_MODE
dmaStreamSetTransactionSize(adcp->data.dma, ((uint32_t)grpp->num_channels / 2U) *
(uint32_t)adcp->depth);
dmaStreamSetTransactionSize(adcp->data.dma, ((uint32_t)grpp->num_channels / 2U) *
(uint32_t)adcp->depth);
#else
dmaStreamSetTransactionSize(adcp->data.dma, (uint32_t)grpp->num_channels *
(uint32_t)adcp->depth);
dmaStreamSetTransactionSize(adcp->data.dma, (uint32_t)grpp->num_channels *
(uint32_t)adcp->depth);
#endif
dmaStreamSetMode(adcp->data.dma, dmamode);
dmaStreamEnable(adcp->data.dma);
dmaStreamSetMode(adcp->data.dma, dmamode);
dmaStreamEnable(adcp->data.dma);
}
#endif /* STM32_ADC_USE_ADC12 == TRUE */
#if STM32_ADC_USE_ADC3 == TRUE
if (&ADCD3 == adcp) {
/* Calculating control registers values.*/
dmamode = adcp->dmamode;
if (grpp->circular) {
dmamode |= STM32_BDMA_CR_CIRC;
cfgr = grpp->cfgr | ADC_CFGR_DMNGT_CIRCULAR;
if (adcp->depth > 1) {
/* If circular buffer depth > 1, then the half transfer interrupt
is enabled in order to allow streaming processing.*/
dmamode |= STM32_BDMA_CR_HTIE;
}
else {
cfgr = grpp->cfgr | ADC_CFGR_DMNGT_ONESHOT;
}
}
/* DMA setup.*/
bdmaStreamSetMemory(adcp->data.bdma, adcp->samples);
bdmaStreamSetTransactionSize(adcp->data.bdma, (uint32_t)grpp->num_channels *
(uint32_t)adcp->depth);
bdmaStreamSetMode(adcp->data.bdma, dmamode);
bdmaStreamEnable(adcp->data.bdma);
}
#endif /* STM32_ADC_USE_ADC3 == TRUE */
/* ADC setup, if it is defined a callback for the analog watch dog then it
is enabled.*/
adcp->adcm->ISR = adcp->adcm->ISR;
adcp->adcm->IER = ADC_IER_OVRIE | ADC_IER_AWD1IE;
#if STM32_ADC_DUAL_MODE
#if STM32_ADC_DUAL_MODE == TRUE && STM32_ADC_USE_ADC12 == TRUE
/* Configuration for dual mode ADC12 */
if (&ADCD1 == adcp) {
/* Configuring the CCR register with the user-specified settings
in the conversion group configuration structure, static settings are
preserved.*/
adcp->adcc->CCR = (adcp->adcc->CCR &
(ADC_CCR_CKMODE_MASK | ADC_CCR_DAMDF_MASK)) | ccr;
/* Configuring the CCR register with the user-specified settings
in the conversion group configuration structure, static settings are
preserved.*/
adcp->adcc->CCR = (adcp->adcc->CCR &
(ADC_CCR_CKMODE_MASK | ADC_CCR_DAMDF_MASK)) | ccr;
adcp->adcm->CFGR2 = grpp->cfgr2;
adcp->adcm->PCSEL = grpp->pcsel;
adcp->adcm->LTR1 = grpp->ltr1;
adcp->adcm->HTR1 = grpp->htr1;
adcp->adcm->LTR1 = grpp->ltr2;
adcp->adcm->HTR1 = grpp->htr2;
adcp->adcm->LTR1 = grpp->ltr3;
adcp->adcm->HTR1 = grpp->htr3;
adcp->adcm->SMPR1 = grpp->smpr[0];
adcp->adcm->SMPR2 = grpp->smpr[1];
adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2);
adcp->adcm->SQR2 = grpp->sqr[1];
adcp->adcm->SQR3 = grpp->sqr[2];
adcp->adcm->SQR4 = grpp->sqr[3];
adcp->adcs->CFGR2 = grpp->cfgr2;
adcp->adcs->PCSEL = grpp->pcsel;
adcp->adcs->LTR1 = grpp->ltr1;
adcp->adcs->HTR1 = grpp->htr1;
adcp->adcs->LTR1 = grpp->ltr2;
adcp->adcs->HTR1 = grpp->htr2;
adcp->adcs->LTR1 = grpp->ltr3;
adcp->adcs->HTR1 = grpp->htr3;
adcp->adcs->SMPR1 = grpp->ssmpr[0];
adcp->adcs->SMPR2 = grpp->ssmpr[1];
adcp->adcs->SQR1 = grpp->ssqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2);
adcp->adcs->SQR2 = grpp->ssqr[1];
adcp->adcs->SQR3 = grpp->ssqr[2];
adcp->adcs->SQR4 = grpp->ssqr[3];
adcp->adcm->CFGR2 = grpp->cfgr2;
adcp->adcm->PCSEL = grpp->pcsel;
adcp->adcm->LTR1 = grpp->ltr1;
adcp->adcm->HTR1 = grpp->htr1;
adcp->adcm->LTR1 = grpp->ltr2;
adcp->adcm->HTR1 = grpp->htr2;
adcp->adcm->LTR1 = grpp->ltr3;
adcp->adcm->HTR1 = grpp->htr3;
adcp->adcm->SMPR1 = grpp->smpr[0];
adcp->adcm->SMPR2 = grpp->smpr[1];
adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2);
adcp->adcm->SQR2 = grpp->sqr[1];
adcp->adcm->SQR3 = grpp->sqr[2];
adcp->adcm->SQR4 = grpp->sqr[3];
adcp->adcs->CFGR2 = grpp->cfgr2;
adcp->adcs->PCSEL = grpp->pcsel;
adcp->adcs->LTR1 = grpp->ltr1;
adcp->adcs->HTR1 = grpp->htr1;
adcp->adcs->LTR1 = grpp->ltr2;
adcp->adcs->HTR1 = grpp->htr2;
adcp->adcs->LTR1 = grpp->ltr3;
adcp->adcs->HTR1 = grpp->htr3;
adcp->adcs->SMPR1 = grpp->ssmpr[0];
adcp->adcs->SMPR2 = grpp->ssmpr[1];
adcp->adcs->SQR1 = grpp->ssqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2);
adcp->adcs->SQR2 = grpp->ssqr[1];
adcp->adcs->SQR3 = grpp->ssqr[2];
adcp->adcs->SQR4 = grpp->ssqr[3];
/* ADC configuration.*/
adcp->adcm->CFGR = cfgr;
adcp->adcs->CFGR = cfgr;
}
/* ADC configuration.*/
adcp->adcm->CFGR = cfgr;
adcp->adcs->CFGR = cfgr;
#endif /* STM32_ADC_DUAL_MODE == TRUE && STM32_ADC_USE_ADC12 == TRUE */
#else /* !STM32_ADC_DUAL_MODE */
adcp->adcm->CFGR2 = grpp->cfgr2;
adcp->adcm->PCSEL = grpp->pcsel;
adcp->adcm->LTR1 = grpp->ltr1;
adcp->adcm->HTR1 = grpp->htr1;
adcp->adcm->LTR1 = grpp->ltr2;
adcp->adcm->HTR1 = grpp->htr2;
adcp->adcm->LTR1 = grpp->ltr3;
adcp->adcm->HTR1 = grpp->htr3;
adcp->adcm->SMPR1 = grpp->smpr[0];
adcp->adcm->SMPR2 = grpp->smpr[1];
adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels);
adcp->adcm->SQR2 = grpp->sqr[1];
adcp->adcm->SQR3 = grpp->sqr[2];
adcp->adcm->SQR4 = grpp->sqr[3];
#if STM32_ADC_DUAL_MODE == FALSE || STM32_ADC_USE_ADC3 == TRUE
/* Configuration for ADC3 and single mode ADC1 */
#if STM32_ADC_DUAL_MODE == TRUE && STM32_ADC_USE_ADC3 == TRUE
if (&ADCD3 == adcp)
#endif
{
adcp->adcm->CFGR2 = grpp->cfgr2;
adcp->adcm->PCSEL = grpp->pcsel;
adcp->adcm->LTR1 = grpp->ltr1;
adcp->adcm->HTR1 = grpp->htr1;
adcp->adcm->LTR1 = grpp->ltr2;
adcp->adcm->HTR1 = grpp->htr2;
adcp->adcm->LTR1 = grpp->ltr3;
adcp->adcm->HTR1 = grpp->htr3;
adcp->adcm->SMPR1 = grpp->smpr[0];
adcp->adcm->SMPR2 = grpp->smpr[1];
adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels);
adcp->adcm->SQR2 = grpp->sqr[1];
adcp->adcm->SQR3 = grpp->sqr[2];
adcp->adcm->SQR4 = grpp->sqr[3];
/* ADC configuration.*/
adcp->adcm->CFGR = cfgr;
#endif /* !STM32_ADC_DUAL_MODE */
/* ADC configuration.*/
adcp->adcm->CFGR = cfgr;
}
#endif
/* Starting conversion.*/
adcp->adcm->CR |= ADC_CR_ADSTART;
@ -641,7 +708,18 @@ void adc_lld_start_conversion(ADCDriver *adcp) {
*/
void adc_lld_stop_conversion(ADCDriver *adcp) {
dmaStreamDisable(adcp->data.dma);
#if STM32_ADC_USE_ADC12 == TRUE
if (&ADCD1 == adcp) {
dmaStreamDisable(adcp->data.dma);
}
#endif /* STM32_ADC_USE_ADC12 == TRUE */
#if STM32_ADC_USE_ADC3 == TRUE
if (&ADCD3 == adcp) {
bdmaStreamDisable(adcp->data.bdma);
}
#endif /* STM32_ADC_USE_ADC12 == TRUE */
adc_lld_stop_adc(adcp);
}

View File

@ -308,6 +308,11 @@
#error "ADC driver activated but no ADC peripheral assigned"
#endif
/* Dual mode is only supported with ADC12.*/
#if !STM32_ADC_USE_ADC12 && STM32_ADC_DUAL_MODE
#error "STM32_ADC_DUAL_MODE only supported with ADC12"
#endif
/* Check on the presence of the DMA streams settings in mcuconf.h.*/
#if STM32_ADC_USE_ADC12 && !defined(STM32_ADC_ADC12_DMA_STREAM)
#error "STM32_ADC_ADC12_DMA_STREAM not defined"

View File

@ -272,7 +272,7 @@ typedef struct {
*
* @special
*/
#if !defined(STM32_ENFORCE_H7_REV_XY) || defined(__DOXYGEN__)
#if defined(STM32_ENFORCE_H7_REV_XY) || defined(__DOXYGEN__)
#define bdmaStreamSetMemory(stp, addr) { \
(stp)->channel->CM0AR = (uint32_t)(addr); \
}