/** * @file STM32/i2c_lld.c * @brief STM32 I2C subsystem low level driver source. Slave mode not implemented. * @addtogroup STM32_I2C * @{ */ #include "ch.h" #include "hal.h" #include "i2c_lld.h" #if HAL_USE_I2C || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief I2C1 driver identifier.*/ #if STM32_I2C_USE_I2C1 || defined(__DOXYGEN__) I2CDriver I2CD1; #endif /** @brief I2C2 driver identifier.*/ #if STM32_I2C_USE_I2C2 || defined(__DOXYGEN__) I2CDriver I2CD2; #endif /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ static uint32_t i2c_get_event(I2CDriver *i2cp){ uint32_t regSR1 = i2cp->id_i2c->SR1; uint32_t regSR2 = i2cp->id_i2c->SR2; /* return the last event value from I2C status registers */ return (I2C_EV_MASK & (regSR1 | (regSR2 << 16))); } static void i2c_serve_event_interrupt(I2CDriver *i2cp) { #define txBuffp (i2cp->txBuffp) #define rxBuffp (i2cp->rxBuffp) I2C_TypeDef *dp = i2cp->id_i2c; switch(i2c_get_event(i2cp)) { case I2C_EV5_MASTER_MODE_SELECT: i2cp->flags &= ~I2C_FLG_HEADER_SENT; dp->DR = i2cp->slave_addr1; break; case I2C_EV9_MASTER_ADDR_10BIT: if(i2cp->flags & I2C_FLG_MASTER_RECEIVER) { i2cp->slave_addr1 |= 0x01; i2cp->flags |= I2C_FLG_HEADER_SENT; // i2cp->id_i2c->CR1 = (i2cp->id_i2c->CR1 & (~I2C_CR1_ACK)) | I2C_CR1_STOP; } dp->DR = i2cp->slave_addr2; break; //------------------------------------------------------------------------ // Master Transmitter ---------------------------------------------------- //------------------------------------------------------------------------ case I2C_EV6_MASTER_TRA_MODE_SELECTED: if(i2cp->flags & I2C_FLG_HEADER_SENT){ dp->CR1 |= I2C_CR1_START; // re-send the start in 10-Bit address mode break; } //Initialize the transmit buffer pointer txBuffp = (uint8_t*)i2cp->id_slave_config->txbuf; i2cp->txbytes--; /* If no further data to be sent, disable the I2C ITBUF in order to not have a TxE interrupt */ if(i2cp->txbytes == 0) { dp->CR2 &= (uint16_t)~I2C_CR2_ITBUFEN; } //EV8_1 write the first data dp->DR = *txBuffp; txBuffp++; break; case I2C_EV8_MASTER_BYTE_TRANSMITTING: if(i2cp->txbytes > 0) { i2cp->txbytes--; if(i2cp->txbytes == 0) { /* If no further data to be sent, disable the ITBUF in order to not have a TxE interrupt */ dp->CR2 &= (uint16_t)~I2C_CR2_ITBUFEN; } dp->DR = *txBuffp; txBuffp++; } break; case I2C_EV8_2_MASTER_BYTE_TRANSMITTED: /* if nothing to read then generate stop */ if (i2cp->rxbytes == 0){ dp->CR1 |= I2C_CR1_STOP; // stop generation /* Disable ITEVT In order to not have again a BTF IT */ dp->CR2 &= (uint16_t)~I2C_CR2_ITEVTEN; /* Portable I2C ISR code defined in the high level driver, note, it is a macro.*/ _i2c_isr_code(i2cp, i2cp->id_slave_config); } else{ /* Disable ITEVT In order to not have again a BTF IT */ dp->CR2 &= (uint16_t)~I2C_CR2_ITEVTEN; /* send restart and begin reading operations */ i2c_lld_master_receive(i2cp, i2cp->slave_addr, i2cp->rxbytes); } break; //------------------------------------------------------------------------ // Master Receiver ------------------------------------------------------- //------------------------------------------------------------------------ case I2C_EV6_MASTER_REC_MODE_SELECTED: chSysLockFromIsr(); switch(i2cp->flags & EV6_SUBEV_MASK) { case I2C_EV6_3_MASTER_REC_1BTR_MODE_SELECTED: // only an single byte to receive /* Clear ACK */ dp->CR1 &= (uint16_t)~I2C_CR1_ACK; /* Program the STOP */ dp->CR1 |= I2C_CR1_STOP; break; case I2C_EV6_1_MASTER_REC_2BTR_MODE_SELECTED: // only two bytes to receive /* Clear ACK */ dp->CR1 &= (uint16_t)~I2C_CR1_ACK; /* Disable the ITBUF in order to have only the BTF interrupt */ dp->CR2 &= (uint16_t)~I2C_CR2_ITBUFEN; break; } chSysUnlockFromIsr(); /* Initialize receive buffer pointer */ rxBuffp = i2cp->id_slave_config->rxbuf; break; case I2C_EV7_MASTER_REC_BYTE_RECEIVED: if(i2cp->rxbytes != 3) { /* Read the data register */ *rxBuffp = dp->DR; rxBuffp++; i2cp->rxbytes--; switch(i2cp->rxbytes){ case 3: /* Disable the ITBUF in order to have only the BTF interrupt */ dp->CR2 &= (uint16_t)~I2C_CR2_ITBUFEN; i2cp->flags |= I2C_FLG_3BTR; break; case 0: /* Portable I2C ISR code defined in the high level driver, note, it is a macro.*/ _i2c_isr_code(i2cp, i2cp->id_slave_config); break; } } // when remaining 3 bytes do nothing, wait until RXNE and BTF are set (until 2 bytes are received) break; case I2C_EV7_MASTER_REC_BYTE_QUEUED: switch(i2cp->flags & EV7_SUBEV_MASK) { case I2C_EV7_2_MASTER_REC_3BYTES_TO_PROCESS: // DataN-2 and DataN-1 are received chSysLockFromIsr(); dp->CR2 |= I2C_CR2_ITBUFEN; /* Clear ACK */ dp->CR1 &= (uint16_t)~I2C_CR1_ACK; /* Read the DataN-2*/ *rxBuffp = dp->DR; //This clear the RXE & BFT flags and launch the DataN reception in the shift register (ending the SCL stretch) rxBuffp++; /* Program the STOP */ dp->CR1 |= I2C_CR1_STOP; /* Read the DataN-1 */ *rxBuffp = dp->DR; chSysUnlockFromIsr(); rxBuffp++; /* Decrement the number of readed bytes */ i2cp->rxbytes -= 2; i2cp->flags = 0; // ready for read DataN on the next EV7 break; case I2C_EV7_3_MASTER_REC_2BYTES_TO_PROCESS: // only for case of two bytes to be received // DataN-1 and DataN are received chSysLockFromIsr(); /* Program the STOP */ dp->CR1 |= I2C_CR1_STOP; /* Read the DataN-1*/ *rxBuffp = dp->DR; chSysUnlockFromIsr(); rxBuffp++; /* Read the DataN*/ *rxBuffp = dp->DR; i2cp->rxbytes = 0; i2cp->flags = 0; /* Portable I2C ISR code defined in the high level driver, note, it is a macro.*/ _i2c_isr_code(i2cp, i2cp->id_slave_config); break; } break; } #undef rxBuffp #undef txBuffp } static void i2c_serve_error_interrupt(I2CDriver *i2cp) { i2cflags_t flags; I2C_TypeDef *reg; reg = i2cp->id_i2c; flags = I2CD_NO_ERROR; if(reg->SR1 & I2C_SR1_BERR) { // Bus error reg->SR1 &= ~I2C_SR1_BERR; flags |= I2CD_BUS_ERROR; } if(reg->SR1 & I2C_SR1_ARLO) { // Arbitration lost reg->SR1 &= ~I2C_SR1_ARLO; flags |= I2CD_ARBITRATION_LOST; } if(reg->SR1 & I2C_SR1_AF) { // Acknowledge fail reg->SR1 &= ~I2C_SR1_AF; reg->CR1 |= I2C_CR1_STOP; // setting stop bit flags |= I2CD_ACK_FAILURE; } if(reg->SR1 & I2C_SR1_OVR) { // Overrun reg->SR1 &= ~I2C_SR1_OVR; flags |= I2CD_OVERRUN; } if(reg->SR1 & I2C_SR1_PECERR) { // PEC error reg->SR1 &= ~I2C_SR1_PECERR; flags |= I2CD_PEC_ERROR; } if(reg->SR1 & I2C_SR1_TIMEOUT) { // SMBus Timeout reg->SR1 &= ~I2C_SR1_TIMEOUT; flags |= I2CD_TIMEOUT; } if(reg->SR1 & I2C_SR1_SMBALERT) { // SMBus alert reg->SR1 &= ~I2C_SR1_SMBALERT; flags |= I2CD_SMB_ALERT; } if(flags != I2CD_NO_ERROR) { // send communication end signal _i2c_isr_code(i2cp, i2cp->id_slave_config); chSysLockFromIsr(); i2cAddFlagsI(i2cp, flags); chSysUnlockFromIsr(); } } #if STM32_I2C_USE_I2C1 || defined(__DOXYGEN__) /** * @brief I2C1 event interrupt handler. */ CH_IRQ_HANDLER(VectorBC) { CH_IRQ_PROLOGUE(); i2c_serve_event_interrupt(&I2CD1); CH_IRQ_EPILOGUE(); } /** * @brief I2C1 error interrupt handler. */ CH_IRQ_HANDLER(VectorC0) { CH_IRQ_PROLOGUE(); i2c_serve_error_interrupt(&I2CD1); CH_IRQ_EPILOGUE(); } #endif #if STM32_I2C_USE_I2C2 || defined(__DOXYGEN__) /** * @brief I2C2 event interrupt handler. */ CH_IRQ_HANDLER(VectorC4) { CH_IRQ_PROLOGUE(); i2c_serve_event_interrupt(&I2CD2); CH_IRQ_EPILOGUE(); } /** * @brief I2C2 error interrupt handler. */ CH_IRQ_HANDLER(VectorC8) { CH_IRQ_PROLOGUE(); i2c_serve_error_interrupt(&I2CD2); CH_IRQ_EPILOGUE(); } #endif /** * @brief Low level I2C driver initialization. */ void i2c_lld_init(void) { #if STM32_I2C_USE_I2C1 RCC->APB1RSTR = RCC_APB1RSTR_I2C1RST; // reset I2C 1 RCC->APB1RSTR = 0; i2cObjectInit(&I2CD1); I2CD1.id_i2c = I2C1; #endif #if STM32_I2C_USE_I2C2 RCC->APB1RSTR = RCC_APB1RSTR_I2C2RST; // reset I2C 2 RCC->APB1RSTR = 0; i2cObjectInit(&I2CD2); I2CD2.id_i2c = I2C2; #endif } /** * @brief Configures and activates the I2C peripheral. * * @param[in] i2cp pointer to the @p I2CDriver object */ void i2c_lld_start(I2CDriver *i2cp) { /* If in stopped state then enables the I2C clock.*/ if (i2cp->id_state == I2C_STOP) { #if STM32_I2C_USE_I2C1 if (&I2CD1 == i2cp) { NVICEnableVector(I2C1_EV_IRQn, STM32_I2C_I2C1_IRQ_PRIORITY); NVICEnableVector(I2C1_ER_IRQn, STM32_I2C_I2C1_IRQ_PRIORITY); RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // I2C 1 clock enable } #endif #if STM32_I2C_USE_I2C2 if (&I2CD2 == i2cp) { NVICEnableVector(I2C2_EV_IRQn, STM32_I2C_I2C2_IRQ_PRIORITY); NVICEnableVector(I2C2_ER_IRQn, STM32_I2C_I2C2_IRQ_PRIORITY); RCC->APB1ENR |= RCC_APB1ENR_I2C2EN; // I2C 2 clock enable } #endif } /* I2C setup.*/ i2cp->id_i2c->CR1 = I2C_CR1_SWRST; // reset i2c peripherial i2cp->id_i2c->CR1 = 0; i2c_lld_set_clock(i2cp); i2c_lld_set_opmode(i2cp); i2cp->id_i2c->CR2 |= I2C_CR2_ITERREN | I2C_CR2_ITEVTEN | I2C_CR2_ITBUFEN;// enable interrupts i2cp->id_i2c->CR1 |= 1; // enable interface } void i2c_lld_reset(I2CDriver *i2cp){ chDbgCheck((i2cp->id_state == I2C_STOP)||(i2cp->id_state == I2C_READY), "i2c_lld_reset: invalid state"); RCC->APB1RSTR = RCC_APB1RSTR_I2C1RST; // reset I2C 1 RCC->APB1RSTR = 0; } /** * @brief Set clock speed. * * @param[in] i2cp pointer to the @p I2CDriver object */ void i2c_lld_set_clock(I2CDriver *i2cp) { volatile uint16_t regCCR, regCR2, freq, clock_div; volatile uint16_t pe_bit_saved; int32_t clock_speed = i2cp->id_config->clock_speed; i2cdutycycle_t duty = i2cp->id_config->duty_cycle; chDbgCheck((i2cp != NULL) && (clock_speed > 0) && (clock_speed <= 4000000), "i2c_lld_set_clock"); /*---------------------------- CR2 Configuration ------------------------*/ /* Get the I2Cx CR2 value */ regCR2 = i2cp->id_i2c->CR2; /* Clear frequency FREQ[5:0] bits */ regCR2 &= (uint16_t)~I2C_CR2_FREQ; /* Set frequency bits depending on pclk1 value */ freq = (uint16_t)(STM32_PCLK1 / 1000000); chDbgCheck((freq >= 2) && (freq <= 36), "i2c_lld_set_clock() : Peripheral clock freq. out of range"); regCR2 |= freq; i2cp->id_i2c->CR2 = regCR2; /*---------------------------- CCR Configuration ------------------------*/ pe_bit_saved = (i2cp->id_i2c->CR1 & I2C_CR1_PE); /* Disable the selected I2C peripheral to configure TRISE */ i2cp->id_i2c->CR1 &= (uint16_t)~I2C_CR1_PE; /* Clear F/S, DUTY and CCR[11:0] bits */ regCCR = 0; clock_div = I2C_CCR_CCR; /* Configure clock_div in standard mode */ if (clock_speed <= 100000) { chDbgAssert(duty == STD_DUTY_CYCLE, "i2c_lld_set_clock(), #1", "Invalid standard mode duty cycle"); /* Standard mode clock_div calculate: Tlow/Thigh = 1/1 */ clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 2)); /* Test if CCR value is under 0x4, and set the minimum allowed value */ if (clock_div < 0x04) clock_div = 0x04; /* Set clock_div value for standard mode */ regCCR |= (clock_div & I2C_CCR_CCR); /* Set Maximum Rise Time for standard mode */ i2cp->id_i2c->TRISE = freq + 1; } /* Configure clock_div in fast mode */ else if(clock_speed <= 400000) { chDbgAssert((duty == FAST_DUTY_CYCLE_2) || (duty == FAST_DUTY_CYCLE_16_9), "i2c_lld_set_clock(), #2", "Invalid fast mode duty cycle"); if(duty == FAST_DUTY_CYCLE_2) { /* Fast mode clock_div calculate: Tlow/Thigh = 2/1 */ clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 3)); } else if(duty == FAST_DUTY_CYCLE_16_9) { /* Fast mode clock_div calculate: Tlow/Thigh = 16/9 */ clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 25)); /* Set DUTY bit */ regCCR |= I2C_CCR_DUTY; } /* Test if CCR value is under 0x1, and set the minimum allowed value */ if(clock_div < 0x01) clock_div = 0x01; /* Set clock_div value and F/S bit for fast mode*/ regCCR |= (I2C_CCR_FS | (clock_div & I2C_CCR_CCR)); /* Set Maximum Rise Time for fast mode */ i2cp->id_i2c->TRISE = (freq * 300 / 1000) + 1; } chDbgAssert((clock_div <= I2C_CCR_CCR), "i2c_lld_set_clock(), #3", "Too low clock clock speed selected"); /* Write to I2Cx CCR */ i2cp->id_i2c->CCR = regCCR; /* restore the I2C peripheral enabled state */ i2cp->id_i2c->CR1 |= pe_bit_saved; } /** * @brief Set operation mode of I2C hardware. * * @param[in] i2cp pointer to the @p I2CDriver object */ void i2c_lld_set_opmode(I2CDriver *i2cp) { i2copmode_t opmode = i2cp->id_config->op_mode; uint16_t regCR1; /*---------------------------- CR1 Configuration ------------------------*/ /* Get the I2Cx CR1 value */ regCR1 = i2cp->id_i2c->CR1; switch(opmode){ case OPMODE_I2C: regCR1 &= (uint16_t)~(I2C_CR1_SMBUS|I2C_CR1_SMBTYPE); break; case OPMODE_SMBUS_DEVICE: regCR1 |= I2C_CR1_SMBUS; regCR1 &= (uint16_t)~(I2C_CR1_SMBTYPE); break; case OPMODE_SMBUS_HOST: regCR1 |= (I2C_CR1_SMBUS|I2C_CR1_SMBTYPE); break; } /* Write to I2Cx CR1 */ i2cp->id_i2c->CR1 = regCR1; } /** * @brief Set own address. * * @param[in] i2cp pointer to the @p I2CDriver object */ void i2c_lld_set_own_address(I2CDriver *i2cp) { //TODO: dual address mode /*---------------------------- OAR1 Configuration -----------------------*/ i2cp->id_i2c->OAR1 |= 1 << 14; if (&(i2cp->id_config->own_addr_10) == NULL){// only 7-bit address i2cp->id_i2c->OAR1 &= (~I2C_OAR1_ADDMODE); i2cp->id_i2c->OAR1 |= i2cp->id_config->own_addr_7 << 1; } else { chDbgAssert((i2cp->id_config->own_addr_10 < 1024), "i2c_lld_set_own_address(), #1", "10-bit address longer then 10 bit") i2cp->id_i2c->OAR1 |= I2C_OAR1_ADDMODE; i2cp->id_i2c->OAR1 |= i2cp->id_config->own_addr_10; } } /** * @brief Deactivates the I2C peripheral. * * @param[in] i2cp pointer to the @p I2CDriver object */ void i2c_lld_stop(I2CDriver *i2cp) { /* If in ready state then disables the I2C clock.*/ if (i2cp->id_state == I2C_READY) { #if STM32_I2C_USE_I2C1 if (&I2CD1 == i2cp) { NVICDisableVector(I2C1_EV_IRQn); NVICDisableVector(I2C1_ER_IRQn); RCC->APB1ENR &= ~RCC_APB1ENR_I2C1EN; } #endif #if STM32_I2C_USE_I2C2 if (&I2CD2 == i2cp) { NVICDisableVector(I2C2_EV_IRQn); NVICDisableVector(I2C2_ER_IRQn); RCC->APB1ENR &= ~RCC_APB1ENR_I2C2EN; } #endif } i2cp->id_state = I2C_STOP; } /** * @brief Transmits data ever the I2C bus as master. * * @param[in] i2cp pointer to the @p I2CDriver object * @param[in] slave_addr Slave device address. Bits 0-9 contain slave * device address. Bit 15 must be set to 1 if 10-bit * addressing modes used. Otherwise keep it cleared. * Bits 10-14 unused. * @param[in] txbytes number of bytes to be transmited * @param[in] rxbytes number of bytes to be received * */ void i2c_lld_master_transmit(I2CDriver *i2cp, uint16_t slave_addr, size_t txbytes, size_t rxbytes) { i2cp->slave_addr = slave_addr; i2cp->txbytes = txbytes; i2cp->rxbytes = rxbytes; // enable ERR, EVT & BUF ITs i2cp->id_i2c->CR2 |= (I2C_CR2_ITERREN|I2C_CR2_ITEVTEN|I2C_CR2_ITBUFEN); i2cp->id_i2c->CR1 &= ~I2C_CR1_POS; if(slave_addr & 0x8000){// 10-bit mode used // add the two msb of 10-bit address to the header i2cp->slave_addr1 = ((slave_addr >>7) & 0x0006); // add the header bits with LSB = 0 -> write i2cp->slave_addr1 |= 0xF0; // the remaining 8 bit of 10-bit address i2cp->slave_addr2 = slave_addr & 0x00FF; } else{ // LSB = 0 -> write i2cp->slave_addr1 = ((slave_addr <<1) & 0x00FE); } i2cp->flags = 0; i2cp->errors = 0; i2cp->id_i2c->CR1 |= I2C_CR1_START; // send start bit #if !I2C_USE_WAIT /* Wait until the START condition is generated on the bus: * the START bit is cleared by hardware */ uint32_t timeout = 0xfffff; while((i2cp->id_i2c->CR1 & I2C_CR1_START) && timeout--) ; #endif /* I2C_USE_WAIT */ } /** * @brief Receives data from the I2C bus. * * @param[in] i2cp pointer to the @p I2CDriver object * @param[in] slave_addr Slave device address. Bits 0-9 contain slave * device address. Bit 15 must be set to 1 if 10-bit * addressing modes used. Otherwise keep it cleared. * Bits 10-14 unused. * @param[in] txbytes number of bytes to be transmited * @param[in] rxbytes number of bytes to be received * */ void i2c_lld_master_receive(I2CDriver *i2cp, uint16_t slave_addr, size_t rxbytes){ i2cp->slave_addr = slave_addr; i2cp->rxbytes = rxbytes; // enable ERR, EVT & BUF ITs i2cp->id_i2c->CR2 |= (I2C_CR2_ITERREN|I2C_CR2_ITEVTEN|I2C_CR2_ITBUFEN); i2cp->id_i2c->CR1 |= I2C_CR1_ACK; // acknowledge returned i2cp->id_i2c->CR1 &= ~I2C_CR1_POS; if(slave_addr & 0x8000){// 10-bit mode used // add the two msb of 10-bit address to the header i2cp->slave_addr1 = ((slave_addr >>7) & 0x0006); // add the header bits (the LSB -> 1 will be add to second i2cp->slave_addr1 |= 0xF0; // the remaining 8 bit of 10-bit address i2cp->slave_addr2 = slave_addr & 0x00FF; } else{ // LSB = 1 -> receive i2cp->slave_addr1 = ((slave_addr <<1) | 0x01); } i2cp->flags = I2C_FLG_MASTER_RECEIVER; i2cp->errors = 0; // Only one byte to be received if(i2cp->rxbytes == 1) { i2cp->flags |= I2C_FLG_1BTR; } // Only two bytes to be received else if(i2cp->rxbytes == 2) { i2cp->flags |= I2C_FLG_2BTR; i2cp->id_i2c->CR1 |= I2C_CR1_POS; // Acknowledge Position } i2cp->id_i2c->CR1 |= I2C_CR1_START; // send start bit #if !I2C_USE_WAIT /* Wait until the START condition is generated on the bus: * the START bit is cleared by hardware */ uint32_t timeout = 0xfffff; while((i2cp->id_i2c->CR1 & I2C_CR1_START) && timeout--) ; #endif /* I2C_USE_WAIT */ } #endif // HAL_USE_I2C