686 lines
22 KiB
C
686 lines
22 KiB
C
/*
|
|
ChibiOS - Copyright (C) 2006..2015 Giovanni Di Sirio.
|
|
|
|
This file is part of ChibiOS.
|
|
|
|
ChibiOS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ChibiOS is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/**
|
|
* @file chthreads.c
|
|
* @brief Threads code.
|
|
*
|
|
* @addtogroup threads
|
|
* @details Threads related APIs and services.
|
|
* <h2>Operation mode</h2>
|
|
* A thread is an abstraction of an independent instructions flow.
|
|
* In ChibiOS/RT a thread is represented by a "C" function owning
|
|
* a processor context, state informations and a dedicated stack
|
|
* area. In this scenario static variables are shared among all
|
|
* threads while automatic variables are local to the thread.<br>
|
|
* Operations defined for threads:
|
|
* - <b>Create</b>, a thread is started on the specified thread
|
|
* function. This operation is available in multiple variants,
|
|
* both static and dynamic.
|
|
* - <b>Exit</b>, a thread terminates by returning from its top
|
|
* level function or invoking a specific API, the thread can
|
|
* return a value that can be retrieved by other threads.
|
|
* - <b>Wait</b>, a thread waits for the termination of another
|
|
* thread and retrieves its return value.
|
|
* - <b>Resume</b>, a thread created in suspended state is started.
|
|
* - <b>Sleep</b>, the execution of a thread is suspended for the
|
|
* specified amount of time or the specified future absolute time
|
|
* is reached.
|
|
* - <b>SetPriority</b>, a thread changes its own priority level.
|
|
* - <b>Yield</b>, a thread voluntarily renounces to its time slot.
|
|
* .
|
|
* The threads subsystem is implicitly included in kernel however
|
|
* some of its part may be excluded by disabling them in @p chconf.h,
|
|
* see the @p CH_CFG_USE_WAITEXIT and @p CH_CFG_USE_DYNAMIC configuration
|
|
* options.
|
|
* @{
|
|
*/
|
|
|
|
#include "ch.h"
|
|
|
|
/*===========================================================================*/
|
|
/* Module local definitions. */
|
|
/*===========================================================================*/
|
|
|
|
/*===========================================================================*/
|
|
/* Module exported variables. */
|
|
/*===========================================================================*/
|
|
|
|
/*===========================================================================*/
|
|
/* Module local types. */
|
|
/*===========================================================================*/
|
|
|
|
/*===========================================================================*/
|
|
/* Module local variables. */
|
|
/*===========================================================================*/
|
|
|
|
/*===========================================================================*/
|
|
/* Module local functions. */
|
|
/*===========================================================================*/
|
|
|
|
/*===========================================================================*/
|
|
/* Module exported functions. */
|
|
/*===========================================================================*/
|
|
|
|
/**
|
|
* @brief Initializes a thread structure.
|
|
* @note This is an internal functions, do not use it in application code.
|
|
*
|
|
* @param[in] tp pointer to the thread
|
|
* @param[in] prio the priority level for the new thread
|
|
* @return The same thread pointer passed as parameter.
|
|
*
|
|
* @notapi
|
|
*/
|
|
thread_t *_thread_init(thread_t *tp, tprio_t prio) {
|
|
|
|
tp->p_prio = prio;
|
|
tp->p_state = CH_STATE_WTSTART;
|
|
tp->p_flags = CH_FLAG_MODE_STATIC;
|
|
#if CH_CFG_TIME_QUANTUM > 0
|
|
tp->p_preempt = (tslices_t)CH_CFG_TIME_QUANTUM;
|
|
#endif
|
|
#if CH_CFG_USE_MUTEXES == TRUE
|
|
tp->p_realprio = prio;
|
|
tp->p_mtxlist = NULL;
|
|
#endif
|
|
#if CH_CFG_USE_EVENTS == TRUE
|
|
tp->p_epending = (eventmask_t)0;
|
|
#endif
|
|
#if CH_DBG_THREADS_PROFILING == TRUE
|
|
tp->p_time = (systime_t)0;
|
|
#endif
|
|
#if CH_CFG_USE_DYNAMIC == TRUE
|
|
tp->p_refs = (trefs_t)1;
|
|
#endif
|
|
#if CH_CFG_USE_REGISTRY == TRUE
|
|
tp->p_name = NULL;
|
|
REG_INSERT(tp);
|
|
#endif
|
|
#if CH_CFG_USE_WAITEXIT == TRUE
|
|
list_init(&tp->p_waiting);
|
|
#endif
|
|
#if CH_CFG_USE_MESSAGES == TRUE
|
|
queue_init(&tp->p_msgqueue);
|
|
#endif
|
|
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
|
|
tp->p_stklimit = (stkalign_t *)(tp + 1);
|
|
#endif
|
|
#if CH_DBG_STATISTICS == TRUE
|
|
chTMObjectInit(&tp->p_stats);
|
|
#endif
|
|
#if defined(CH_CFG_THREAD_INIT_HOOK)
|
|
CH_CFG_THREAD_INIT_HOOK(tp);
|
|
#endif
|
|
return tp;
|
|
}
|
|
|
|
#if (CH_DBG_FILL_THREADS == TRUE) || defined(__DOXYGEN__)
|
|
/**
|
|
* @brief Memory fill utility.
|
|
*
|
|
* @param[in] startp first address to fill
|
|
* @param[in] endp last address to fill +1
|
|
* @param[in] v filler value
|
|
*
|
|
* @notapi
|
|
*/
|
|
void _thread_memfill(uint8_t *startp, uint8_t *endp, uint8_t v) {
|
|
|
|
while (startp < endp) {
|
|
*startp++ = v;
|
|
}
|
|
}
|
|
#endif /* CH_DBG_FILL_THREADS */
|
|
|
|
/**
|
|
* @brief Creates a new thread into a static memory area.
|
|
* @details The new thread is initialized but not inserted in the ready list,
|
|
* the initial state is @p CH_STATE_WTSTART.
|
|
* @post The initialized thread can be subsequently started by invoking
|
|
* @p chThdStart(), @p chThdStartI() or @p chSchWakeupS()
|
|
* depending on the execution context.
|
|
* @note A thread can terminate by calling @p chThdExit() or by simply
|
|
* returning from its main function.
|
|
* @note Threads created using this function do not obey to the
|
|
* @p CH_DBG_FILL_THREADS debug option because it would keep
|
|
* the kernel locked for too much time.
|
|
*
|
|
* @param[out] wsp pointer to a working area dedicated to the thread stack
|
|
* @param[in] size size of the working area
|
|
* @param[in] prio the priority level for the new thread
|
|
* @param[in] pf the thread function
|
|
* @param[in] arg an argument passed to the thread function. It can be
|
|
* @p NULL.
|
|
* @return The pointer to the @p thread_t structure allocated for
|
|
* the thread into the working space area.
|
|
*
|
|
* @iclass
|
|
*/
|
|
thread_t *chThdCreateI(void *wsp, size_t size,
|
|
tprio_t prio, tfunc_t pf, void *arg) {
|
|
/* The thread structure is laid out in the lower part of the thread
|
|
workspace.*/
|
|
thread_t *tp = wsp;
|
|
|
|
chDbgCheckClassI();
|
|
chDbgCheck((wsp != NULL) && (size >= THD_WORKING_AREA_SIZE(0)) &&
|
|
(prio <= HIGHPRIO) && (pf != NULL));
|
|
|
|
PORT_SETUP_CONTEXT(tp, wsp, size, pf, arg);
|
|
|
|
return _thread_init(tp, prio);
|
|
}
|
|
|
|
/**
|
|
* @brief Creates a new thread into a static memory area.
|
|
* @note A thread can terminate by calling @p chThdExit() or by simply
|
|
* returning from its main function.
|
|
*
|
|
* @param[out] wsp pointer to a working area dedicated to the thread stack
|
|
* @param[in] size size of the working area
|
|
* @param[in] prio the priority level for the new thread
|
|
* @param[in] pf the thread function
|
|
* @param[in] arg an argument passed to the thread function. It can be
|
|
* @p NULL.
|
|
* @return The pointer to the @p thread_t structure allocated for
|
|
* the thread into the working space area.
|
|
*
|
|
* @api
|
|
*/
|
|
thread_t *chThdCreateStatic(void *wsp, size_t size,
|
|
tprio_t prio, tfunc_t pf, void *arg) {
|
|
thread_t *tp;
|
|
|
|
#if CH_DBG_FILL_THREADS == TRUE
|
|
_thread_memfill((uint8_t *)wsp,
|
|
(uint8_t *)wsp + sizeof(thread_t),
|
|
CH_DBG_THREAD_FILL_VALUE);
|
|
_thread_memfill((uint8_t *)wsp + sizeof(thread_t),
|
|
(uint8_t *)wsp + size,
|
|
CH_DBG_STACK_FILL_VALUE);
|
|
#endif
|
|
|
|
chSysLock();
|
|
tp = chThdCreateI(wsp, size, prio, pf, arg);
|
|
chSchWakeupS(tp, MSG_OK);
|
|
chSysUnlock();
|
|
|
|
return tp;
|
|
}
|
|
|
|
/**
|
|
* @brief Resumes a thread created with @p chThdCreateI().
|
|
*
|
|
* @param[in] tp pointer to the thread
|
|
* @return The pointer to the @p thread_t structure allocated for
|
|
* the thread into the working space area.
|
|
*
|
|
* @api
|
|
*/
|
|
thread_t *chThdStart(thread_t *tp) {
|
|
|
|
chSysLock();
|
|
tp = chThdStartI(tp);
|
|
chSysUnlock();
|
|
|
|
return tp;
|
|
}
|
|
|
|
/**
|
|
* @brief Changes the running thread priority level then reschedules if
|
|
* necessary.
|
|
* @note The function returns the real thread priority regardless of the
|
|
* current priority that could be higher than the real priority
|
|
* because the priority inheritance mechanism.
|
|
*
|
|
* @param[in] newprio the new priority level of the running thread
|
|
* @return The old priority level.
|
|
*
|
|
* @api
|
|
*/
|
|
tprio_t chThdSetPriority(tprio_t newprio) {
|
|
tprio_t oldprio;
|
|
|
|
chDbgCheck(newprio <= HIGHPRIO);
|
|
|
|
chSysLock();
|
|
#if CH_CFG_USE_MUTEXES == TRUE
|
|
oldprio = currp->p_realprio;
|
|
if ((currp->p_prio == currp->p_realprio) || (newprio > currp->p_prio)) {
|
|
currp->p_prio = newprio;
|
|
}
|
|
currp->p_realprio = newprio;
|
|
#else
|
|
oldprio = currp->p_prio;
|
|
currp->p_prio = newprio;
|
|
#endif
|
|
chSchRescheduleS();
|
|
chSysUnlock();
|
|
|
|
return oldprio;
|
|
}
|
|
|
|
/**
|
|
* @brief Requests a thread termination.
|
|
* @pre The target thread must be written to invoke periodically
|
|
* @p chThdShouldTerminate() and terminate cleanly if it returns
|
|
* @p true.
|
|
* @post The specified thread will terminate after detecting the termination
|
|
* condition.
|
|
*
|
|
* @param[in] tp pointer to the thread
|
|
*
|
|
* @api
|
|
*/
|
|
void chThdTerminate(thread_t *tp) {
|
|
|
|
chSysLock();
|
|
tp->p_flags |= CH_FLAG_TERMINATE;
|
|
chSysUnlock();
|
|
}
|
|
|
|
/**
|
|
* @brief Suspends the invoking thread for the specified time.
|
|
*
|
|
* @param[in] time the delay in system ticks, the special values are
|
|
* handled as follow:
|
|
* - @a TIME_INFINITE the thread enters an infinite sleep
|
|
* state.
|
|
* - @a TIME_IMMEDIATE this value is not allowed.
|
|
* .
|
|
*
|
|
* @api
|
|
*/
|
|
void chThdSleep(systime_t time) {
|
|
|
|
chSysLock();
|
|
chThdSleepS(time);
|
|
chSysUnlock();
|
|
}
|
|
|
|
/**
|
|
* @brief Suspends the invoking thread until the system time arrives to the
|
|
* specified value.
|
|
* @note The function has no concept of "past", all specifiable times
|
|
* are in the future, this means that if you call this function
|
|
* exceeding your calculated intervals then the function will
|
|
* return in a far future time, not immediately.
|
|
* @see chThdSleepUntilWindowed()
|
|
*
|
|
* @param[in] time absolute system time
|
|
*
|
|
* @api
|
|
*/
|
|
void chThdSleepUntil(systime_t time) {
|
|
|
|
chSysLock();
|
|
time -= chVTGetSystemTimeX();
|
|
if (time > (systime_t)0) {
|
|
chThdSleepS(time);
|
|
}
|
|
chSysUnlock();
|
|
}
|
|
|
|
/**
|
|
* @brief Suspends the invoking thread until the system time arrives to the
|
|
* specified value.
|
|
* @note The system time is assumed to be between @p prev and @p time
|
|
* else the call is assumed to have been called outside the
|
|
* allowed time interval, in this case no sleep is performed.
|
|
* @see chThdSleepUntil()
|
|
*
|
|
* @param[in] prev absolute system time of the previous deadline
|
|
* @param[in] next absolute system time of the next deadline
|
|
* @return the @p next parameter
|
|
*
|
|
* @api
|
|
*/
|
|
systime_t chThdSleepUntilWindowed(systime_t prev, systime_t next) {
|
|
systime_t time;
|
|
|
|
chSysLock();
|
|
time = chVTGetSystemTimeX();
|
|
if (chVTIsTimeWithinX(time, prev, next)) {
|
|
chThdSleepS(next - time);
|
|
}
|
|
chSysUnlock();
|
|
|
|
return next;
|
|
}
|
|
|
|
/**
|
|
* @brief Yields the time slot.
|
|
* @details Yields the CPU control to the next thread in the ready list with
|
|
* equal priority, if any.
|
|
*
|
|
* @api
|
|
*/
|
|
void chThdYield(void) {
|
|
|
|
chSysLock();
|
|
chSchDoYieldS();
|
|
chSysUnlock();
|
|
}
|
|
|
|
/**
|
|
* @brief Terminates the current thread.
|
|
* @details The thread goes in the @p CH_STATE_FINAL state holding the
|
|
* specified exit status code, other threads can retrieve the
|
|
* exit status code by invoking the function @p chThdWait().
|
|
* @post Eventual code after this function will never be executed,
|
|
* this function never returns. The compiler has no way to
|
|
* know this so do not assume that the compiler would remove
|
|
* the dead code.
|
|
*
|
|
* @param[in] msg thread exit code
|
|
*
|
|
* @api
|
|
*/
|
|
void chThdExit(msg_t msg) {
|
|
|
|
chSysLock();
|
|
chThdExitS(msg);
|
|
/* The thread never returns here.*/
|
|
}
|
|
|
|
/**
|
|
* @brief Terminates the current thread.
|
|
* @details The thread goes in the @p CH_STATE_FINAL state holding the
|
|
* specified exit status code, other threads can retrieve the
|
|
* exit status code by invoking the function @p chThdWait().
|
|
* @post Eventual code after this function will never be executed,
|
|
* this function never returns. The compiler has no way to
|
|
* know this so do not assume that the compiler would remove
|
|
* the dead code.
|
|
*
|
|
* @param[in] msg thread exit code
|
|
*
|
|
* @sclass
|
|
*/
|
|
void chThdExitS(msg_t msg) {
|
|
thread_t *tp = currp;
|
|
|
|
tp->p_u.exitcode = msg;
|
|
#if defined(CH_CFG_THREAD_EXIT_HOOK)
|
|
CH_CFG_THREAD_EXIT_HOOK(tp);
|
|
#endif
|
|
#if CH_CFG_USE_WAITEXIT == TRUE
|
|
while (list_notempty(&tp->p_waiting)) {
|
|
(void) chSchReadyI(list_remove(&tp->p_waiting));
|
|
}
|
|
#endif
|
|
#if CH_CFG_USE_REGISTRY == TRUE
|
|
/* Static threads are immediately removed from the registry because
|
|
there is no memory to recover.*/
|
|
if ((tp->p_flags & CH_FLAG_MODE_MASK) == CH_FLAG_MODE_STATIC) {
|
|
REG_REMOVE(tp);
|
|
}
|
|
#endif
|
|
chSchGoSleepS(CH_STATE_FINAL);
|
|
|
|
/* The thread never returns here.*/
|
|
chDbgAssert(false, "zombies apocalypse");
|
|
}
|
|
|
|
#if (CH_CFG_USE_WAITEXIT == TRUE) || defined(__DOXYGEN__)
|
|
/**
|
|
* @brief Blocks the execution of the invoking thread until the specified
|
|
* thread terminates then the exit code is returned.
|
|
* @details This function waits for the specified thread to terminate then
|
|
* decrements its reference counter, if the counter reaches zero then
|
|
* the thread working area is returned to the proper allocator.<br>
|
|
* The memory used by the exited thread is handled in different ways
|
|
* depending on the API that spawned the thread:
|
|
* - If the thread was spawned by @p chThdCreateStatic() or by
|
|
* @p chThdCreateI() then nothing happens and the thread working
|
|
* area is not released or modified in any way. This is the
|
|
* default, totally static, behavior.
|
|
* - If the thread was spawned by @p chThdCreateFromHeap() then
|
|
* the working area is returned to the system heap.
|
|
* - If the thread was spawned by @p chThdCreateFromMemoryPool()
|
|
* then the working area is returned to the owning memory pool.
|
|
* .
|
|
* @pre The configuration option @p CH_CFG_USE_WAITEXIT must be enabled in
|
|
* order to use this function.
|
|
* @post Enabling @p chThdWait() requires 2-4 (depending on the
|
|
* architecture) extra bytes in the @p thread_t structure.
|
|
* @post After invoking @p chThdWait() the thread pointer becomes invalid
|
|
* and must not be used as parameter for further system calls.
|
|
* @note If @p CH_CFG_USE_DYNAMIC is not specified this function just waits for
|
|
* the thread termination, no memory allocators are involved.
|
|
*
|
|
* @param[in] tp pointer to the thread
|
|
* @return The exit code from the terminated thread.
|
|
*
|
|
* @api
|
|
*/
|
|
msg_t chThdWait(thread_t *tp) {
|
|
msg_t msg;
|
|
|
|
chDbgCheck(tp != NULL);
|
|
|
|
chSysLock();
|
|
chDbgAssert(tp != currp, "waiting self");
|
|
#if CH_CFG_USE_DYNAMIC == TRUE
|
|
chDbgAssert(tp->p_refs > (trefs_t)0, "not referenced");
|
|
#endif
|
|
if (tp->p_state != CH_STATE_FINAL) {
|
|
list_insert(currp, &tp->p_waiting);
|
|
chSchGoSleepS(CH_STATE_WTEXIT);
|
|
}
|
|
msg = tp->p_u.exitcode;
|
|
chSysUnlock();
|
|
|
|
#if CH_CFG_USE_DYNAMIC == TRUE
|
|
/* Releasing a lock if it is a dynamic thread.*/
|
|
chThdRelease(tp);
|
|
#endif
|
|
|
|
return msg;
|
|
}
|
|
#endif /* CH_CFG_USE_WAITEXIT */
|
|
|
|
/**
|
|
* @brief Sends the current thread sleeping and sets a reference variable.
|
|
* @note This function must reschedule, it can only be called from thread
|
|
* context.
|
|
*
|
|
* @param[in] trp a pointer to a thread reference object
|
|
* @return The wake up message.
|
|
*
|
|
* @sclass
|
|
*/
|
|
msg_t chThdSuspendS(thread_reference_t *trp) {
|
|
thread_t *tp = chThdGetSelfX();
|
|
|
|
chDbgAssert(*trp == NULL, "not NULL");
|
|
|
|
*trp = tp;
|
|
tp->p_u.wttrp = trp;
|
|
chSchGoSleepS(CH_STATE_SUSPENDED);
|
|
|
|
return chThdGetSelfX()->p_u.rdymsg;
|
|
}
|
|
|
|
/**
|
|
* @brief Sends the current thread sleeping and sets a reference variable.
|
|
* @note This function must reschedule, it can only be called from thread
|
|
* context.
|
|
*
|
|
* @param[in] trp a pointer to a thread reference object
|
|
* @param[in] timeout the timeout in system ticks, the special values are
|
|
* handled as follow:
|
|
* - @a TIME_INFINITE the thread enters an infinite sleep
|
|
* state.
|
|
* - @a TIME_IMMEDIATE the thread is not enqueued and
|
|
* the function returns @p MSG_TIMEOUT as if a timeout
|
|
* occurred.
|
|
* .
|
|
* @return The wake up message.
|
|
* @retval MSG_TIMEOUT if the operation timed out.
|
|
*
|
|
* @sclass
|
|
*/
|
|
msg_t chThdSuspendTimeoutS(thread_reference_t *trp, systime_t timeout) {
|
|
thread_t *tp = chThdGetSelfX();
|
|
|
|
chDbgAssert(*trp == NULL, "not NULL");
|
|
|
|
if (TIME_IMMEDIATE == timeout) {
|
|
return MSG_TIMEOUT;
|
|
}
|
|
|
|
*trp = tp;
|
|
tp->p_u.wttrp = trp;
|
|
|
|
return chSchGoSleepTimeoutS(CH_STATE_SUSPENDED, timeout);
|
|
}
|
|
|
|
/**
|
|
* @brief Wakes up a thread waiting on a thread reference object.
|
|
* @note This function must not reschedule because it can be called from
|
|
* ISR context.
|
|
*
|
|
* @param[in] trp a pointer to a thread reference object
|
|
* @param[in] msg the message code
|
|
*
|
|
* @iclass
|
|
*/
|
|
void chThdResumeI(thread_reference_t *trp, msg_t msg) {
|
|
|
|
if (*trp != NULL) {
|
|
thread_t *tp = *trp;
|
|
|
|
chDbgAssert(tp->p_state == CH_STATE_SUSPENDED,
|
|
"not THD_STATE_SUSPENDED");
|
|
|
|
*trp = NULL;
|
|
tp->p_u.rdymsg = msg;
|
|
(void) chSchReadyI(tp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Wakes up a thread waiting on a thread reference object.
|
|
* @note This function must reschedule, it can only be called from thread
|
|
* context.
|
|
*
|
|
* @param[in] trp a pointer to a thread reference object
|
|
* @param[in] msg the message code
|
|
*
|
|
* @iclass
|
|
*/
|
|
void chThdResumeS(thread_reference_t *trp, msg_t msg) {
|
|
|
|
if (*trp != NULL) {
|
|
thread_t *tp = *trp;
|
|
|
|
chDbgAssert(tp->p_state == CH_STATE_SUSPENDED,
|
|
"not THD_STATE_SUSPENDED");
|
|
|
|
*trp = NULL;
|
|
chSchWakeupS(tp, msg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Wakes up a thread waiting on a thread reference object.
|
|
* @note This function must reschedule, it can only be called from thread
|
|
* context.
|
|
*
|
|
* @param[in] trp a pointer to a thread reference object
|
|
* @param[in] msg the message code
|
|
*
|
|
* @api
|
|
*/
|
|
void chThdResume(thread_reference_t *trp, msg_t msg) {
|
|
|
|
chSysLock();
|
|
chThdResumeS(trp, msg);
|
|
chSysUnlock();
|
|
}
|
|
|
|
/**
|
|
* @brief Enqueues the caller thread on a threads queue object.
|
|
* @details The caller thread is enqueued and put to sleep until it is
|
|
* dequeued or the specified timeouts expires.
|
|
*
|
|
* @param[in] tqp pointer to the threads queue object
|
|
* @param[in] timeout the timeout in system ticks, the special values are
|
|
* handled as follow:
|
|
* - @a TIME_INFINITE the thread enters an infinite sleep
|
|
* state.
|
|
* - @a TIME_IMMEDIATE the thread is not enqueued and
|
|
* the function returns @p MSG_TIMEOUT as if a timeout
|
|
* occurred.
|
|
* .
|
|
* @return The message from @p osalQueueWakeupOneI() or
|
|
* @p osalQueueWakeupAllI() functions.
|
|
* @retval MSG_TIMEOUT if the thread has not been dequeued within the
|
|
* specified timeout or if the function has been
|
|
* invoked with @p TIME_IMMEDIATE as timeout
|
|
* specification.
|
|
*
|
|
* @sclass
|
|
*/
|
|
msg_t chThdEnqueueTimeoutS(threads_queue_t *tqp, systime_t timeout) {
|
|
|
|
if (TIME_IMMEDIATE == timeout) {
|
|
return MSG_TIMEOUT;
|
|
}
|
|
|
|
queue_insert(currp, tqp);
|
|
|
|
return chSchGoSleepTimeoutS(CH_STATE_QUEUED, timeout);
|
|
}
|
|
|
|
/**
|
|
* @brief Dequeues and wakes up one thread from the threads queue object,
|
|
* if any.
|
|
*
|
|
* @param[in] tqp pointer to the threads queue object
|
|
* @param[in] msg the message code
|
|
*
|
|
* @iclass
|
|
*/
|
|
void chThdDequeueNextI(threads_queue_t *tqp, msg_t msg) {
|
|
|
|
if (queue_notempty(tqp)) {
|
|
chThdDoDequeueNextI(tqp, msg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Dequeues and wakes up all threads from the threads queue object.
|
|
*
|
|
* @param[in] tqp pointer to the threads queue object
|
|
* @param[in] msg the message code
|
|
*
|
|
* @iclass
|
|
*/
|
|
void chThdDequeueAllI(threads_queue_t *tqp, msg_t msg) {
|
|
|
|
while (queue_notempty(tqp)) {
|
|
chThdDoDequeueNextI(tqp, msg);
|
|
}
|
|
}
|
|
|
|
/** @} */
|