ChibiOS/os/hal/platforms/STM32/i2c_lld_brts.c

463 lines
13 KiB
C

/**
* @file STM32/i2c_lld.c
* @brief STM32 I2C subsystem low level driver source. Slave mode not implemented.
* @addtogroup STM32_I2C
* @{
*/
#include "ch.h"
#include "hal.h"
#include "i2c_lld.h"
#if HAL_USE_I2C || defined(__DOXYGEN__)
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/** @brief I2C1 driver identifier.*/
#if STM32_I2C_USE_I2C1 || defined(__DOXYGEN__)
I2CDriver I2CD1;
#endif
/** @brief I2C2 driver identifier.*/
#if STM32_I2C_USE_I2C2 || defined(__DOXYGEN__)
I2CDriver I2CD2;
#endif
/*===========================================================================*/
/* Driver local variables. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
/**
* @brief TODO: Status bits translation.
*
* @param[in] sr USART SR register value
*
* @return The error flags.
*/
static i2cflags_t translate_i2c_errors(uint16_t sr) {
i2cflags_t sts = 0;
if (sr & USART_SR_ORE)
sts |= UART_OVERRUN_ERROR;
if (sr & USART_SR_PE)
sts |= UART_PARITY_ERROR;
if (sr & USART_SR_FE)
sts |= UART_FRAMING_ERROR;
if (sr & USART_SR_NE)
sts |= UART_NOISE_ERROR;
if (sr & USART_SR_LBD)
sts |= UART_BREAK_DETECTED;
return sts;
}
static void i2c_serve_error_interrupt(I2CDriver *i2cp) {
// TODO:remove this stub and write normal handler
// this is simply trap for errors
while TRUE{
translate_i2c_errors(i2cp->id_i2c->SR1);
}
}
/* This function handle all regular interrupt conditions
* TODO: 10 bit address handling here
*/
static void i2c_serve_event_interrupt(I2CDriver *i2cp) {
int i = 0;
int n = 0;
int m = 0;
if ((i2cp->id_state == I2C_READY) && (i2cp->id_i2c->SR1 & I2C_SR1_SB)){// start bit sent
//i = i2cp->id_i2c->SR1;
i2cp->id_state = I2C_MACTIVE;
i2cp->id_i2c->DR = (i2cp->id_slave_config->slave_addr1 << 1) |
i2cp->id_slave_config->rw_bit; // write slave address in DR
return;
}
// now "wait" interrupt with ADDR flag
if ((i2cp->id_state == I2C_MACTIVE) && (i2cp->id_i2c->SR1 & I2C_SR1_ADDR)){// address successfully sent
if(i2cp->id_i2c->SR2 & I2C_SR2_TRA){
i2c_lld_txbyte(i2cp); // send first byte
i2cp->id_state = I2C_MTRANSMIT; // change state
return;
}
else {
/* In order to generate the non-acknowledge pulse after the last received
* data byte, the ACK bit must be cleared just after reading the second
* last data byte (after second last RxNE event).
*/
if (i2cp->id_slave_config->rxbytes > 1)
i2cp->id_i2c->CR1 |= I2C_CR1_ACK; // set ACK bit
i2cp->id_state = I2C_MRECEIVE; // change status
return;
}
}
// transmitting bytes one by one
if ((i2cp->id_state == I2C_MTRANSMIT) && (i2cp->id_i2c->SR1 & I2C_SR1_TXE)){
if (i2c_lld_txbyte(i2cp))
i2cp->id_state = I2C_MWAIT_TF; // last byte written
return;
}
//receiving bytes one by one
if ((i2cp->id_state == I2C_MRECEIVE) && (i2cp->id_i2c->SR1 & I2C_SR1_RXNE)){
// i = i2cp->id_i2c->SR1;
// n = i2cp->id_i2c->SR2;
if (i2c_lld_rxbyte(i2cp))
i2cp->id_state = I2C_MWAIT_TF; // last byte read
// i = i2cp->id_i2c->SR1;
// n = i2cp->id_i2c->SR2;
return;
}
// "wait" BTF bit in status register
// if ((i2cp->id_state == I2C_MWAIT_TF) && (i2cp->id_i2c->SR1 & I2C_SR1_BTF)){
if ((i2cp->id_state == I2C_MWAIT_TF) && (i2cp->id_i2c->SR1 & I2C_SR1_RXNE | I2C_SR1_BTF | I2C_SR1_TXE)){
chSysLockFromIsr();
i2cp->id_slave_config->id_callback(i2cp, i2cp->id_slave_config);
i = i2cp->id_i2c->SR1;
n = i2cp->id_i2c->SR2;
m = i2cp->id_i2c->CR1;
chSysUnlockFromIsr();
return;
}
else{ // trap
i = i2cp->id_i2c->SR1;
n = i2cp->id_i2c->SR2;
m = i2cp->id_i2c->CR1;
return;
}
}
#if STM32_I2C_USE_I2C1 || defined(__DOXYGEN__)
/**
* @brief I2C1 event interrupt handler.
*/
CH_IRQ_HANDLER(VectorBC) {
CH_IRQ_PROLOGUE();
i2c_serve_event_interrupt(&I2CD1);
CH_IRQ_EPILOGUE();
}
/**
* @brief I2C1 error interrupt handler.
*/
CH_IRQ_HANDLER(VectorC0) {
CH_IRQ_PROLOGUE();
i2c_serve_error_interrupt(&I2CD1);
CH_IRQ_EPILOGUE();
}
#endif
#if STM32_I2C_USE_I2C2 || defined(__DOXYGEN__)
/**
* @brief I2C2 event interrupt handler.
*/
CH_IRQ_HANDLER(VectorC4) {
CH_IRQ_PROLOGUE();
i2c_serve_event_interrupt(&I2CD2);
CH_IRQ_EPILOGUE();
}
/**
* @brief I2C2 error interrupt handler.
*/
CH_IRQ_HANDLER(VectorC8) {
CH_IRQ_PROLOGUE();
i2c_serve_error_interrupt(&I2CD2);
CH_IRQ_EPILOGUE();
}
#endif
/**
* @brief Low level I2C driver initialization.
*/
void i2c_lld_init(void) {
#if STM32_I2C_USE_I2C1
RCC->APB1RSTR = RCC_APB1RSTR_I2C1RST; // reset I2C 1
RCC->APB1RSTR = 0;
i2cObjectInit(&I2CD1);
I2CD1.id_i2c = I2C1;
#endif
#if STM32_I2C_USE_I2C2
RCC->APB1RSTR = RCC_APB1RSTR_I2C2RST; // reset I2C 2
RCC->APB1RSTR = 0;
i2cObjectInit(&I2CD2);
I2CD2.id_i2c = I2C2;
#endif
}
/**
* @brief Configures and activates the I2C peripheral.
*
* @param[in] i2cp pointer to the @p I2CDriver object
*/
void i2c_lld_start(I2CDriver *i2cp) {
/* If in stopped state then enables the I2C clock.*/
if (i2cp->id_state == I2C_STOP) {
#if STM32_I2C_USE_I2C1
if (&I2CD1 == i2cp) {
NVICEnableVector(I2C1_EV_IRQn, STM32_I2C_I2C1_IRQ_PRIORITY);
NVICEnableVector(I2C1_ER_IRQn, STM32_I2C_I2C1_IRQ_PRIORITY);
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // I2C 1 clock enable
}
#endif
#if STM32_I2C_USE_I2C2
if (&I2CD2 == i2cp) {
NVICEnableVector(I2C2_EV_IRQn, STM32_I2C2_IRQ_PRIORITY);
NVICEnableVector(I2C2_ER_IRQn, STM32_I2C2_IRQ_PRIORITY);
RCC->APB1ENR |= RCC_APB1ENR_I2C2EN; // I2C 2 clock enable
}
#endif
}
/* I2C setup.*/
i2cp->id_i2c->CR1 = I2C_CR1_SWRST; // reset i2c peripherial
i2cp->id_i2c->CR1 = 0;
i2cp->id_i2c->CR1 = i2cp->id_config->i2cc_cr1;
i2cp->id_i2c->CR2 = i2cp->id_config->i2cc_cr2 |
I2C_CR2_ITERREN |
I2C_CR2_ITEVTEN |
I2C_CR2_ITBUFEN |
36; //TODO: replace this by macro calculation
/* TODO:
* 1. macro timing calculator
* 2. parameter checker
* 3. definitions in halconf.h: i2c-freq, i2c_mode, etc
* 4. trise time calculator/checker
*/
i2cp->id_i2c->CCR = i2cp->id_config->i2cc_ccr | 180;
i2cp->id_i2c->TRISE = i2cp->id_config->i2cc_trise | 37;
i2cp->id_i2c->CR1 |= 1; // enable interface
}
/**
* @brief Deactivates the I2C peripheral.
*
* @param[in] i2cp pointer to the @p I2CDriver object
*/
void i2c_lld_stop(I2CDriver *i2cp) {
/* If in ready state then disables the I2C clock.*/
if (i2cp->id_state == I2C_READY) {
#if STM32_I2C_USE_I2C1
if (&I2CD1 == i2cp) {
NVICDisableVector(I2C1_EV_IRQn);
NVICDisableVector(I2C1_ER_IRQn);
RCC->APB1ENR &= ~RCC_APB1ENR_I2C1EN;
}
#endif
#if STM32_I2C_USE_I2C2
if (&I2CD2 == i2cp) {
NVICDisableVector(I2C2_EV_IRQn);
NVICDisableVector(I2C2_ER_IRQn);
RCC->APB1ENR &= ~RCC_APB1ENR_I2C2EN;
}
#endif
}
i2cp->id_state = I2C_STOP;
}
/* helper function, not API
* write bytes in DR register
* return TRUE if last byte written
*/
bool_t i2c_lld_txbyte(I2CDriver *i2cp) {
if (i2cp->id_slave_config->txbufhead < i2cp->id_slave_config->txbytes){
i2cp->id_i2c->DR = i2cp->id_slave_config->txbuf[i2cp->id_slave_config->txbufhead];
(i2cp->id_slave_config->txbufhead)++;
return(FALSE);
}
i2cp->id_slave_config->txbufhead = 0;
return(TRUE); // last byte written
}
/* helper function, not API
* read bytes from DR register
* return TRUE if last byte read
*/
bool_t i2c_lld_rxbyte(I2CDriver *i2cp) {
// temporal variables
#define rxbuf i2cp->id_slave_config->rxbuf
#define rxbufhead i2cp->id_slave_config->rxbufhead
#define rxdepth i2cp->id_slave_config->rxdepth
#define rxbytes i2cp->id_slave_config->rxbytes
/* In order to generate the non-acknowledge pulse after the last received
* data byte, the ACK bit must be cleared just after reading the second
* last data byte (after second last RxNE event).
*/
if (rxbufhead < rxbytes){
rxbuf[rxbufhead] = i2cp->id_i2c->DR;
if ((rxbytes - rxbufhead) <= 2){
i2cp->id_i2c->CR1 &= (~I2C_CR1_ACK);// clear ACK bit for automatically send NACK
}
rxbufhead++;
return(FALSE);
}
rxbuf[rxbufhead] = i2cp->id_i2c->DR; // read last byte
rxbufhead = 0;
#undef rxbuf
#undef rxbufhead
#undef rxdepth
#undef rxbytes
return(TRUE); // last byte read
}
void i2c_lld_master_start(I2CDriver *i2cp){
i2cp->id_i2c->CR1 |= I2C_CR1_START;
}
void i2c_lld_master_stop(I2CDriver *i2cp){
i2cp->id_i2c->CR1 |= I2C_CR1_STOP;
chSysLock();
while (i2cp->id_i2c->CR1 & I2C_CR1_STOP);
chSysUnlock();
}
void i2c_lld_master_transmitI(I2CDriver *i2cp, I2CSlaveConfig *i2cscfg){
//TODO: check txbytes <= sizeof(i2cscfg->txbuf) here, or in hylevel API
i2cp->id_slave_config = i2cscfg;
i2cp->id_slave_config->rw_bit = I2C_WRITE;
// generate start condition. Later transmission goes in background
i2c_lld_master_start(i2cp);
}
void i2c_lld_master_receiveI(I2CDriver *i2cp, I2CSlaveConfig *i2cscfg){
//TODO: check txbytes <= sizeof(i2cscfg->txbuf) here, or in hylevel API
i2cp->id_slave_config = i2cscfg;
i2cp->id_slave_config->rw_bit = I2C_READ;
// generate (re)start condition. Later connection goes asynchronously
i2c_lld_master_start(i2cp);
}
/**
* @brief Transmits data ever the I2C bus as masteri2cp.
*
* @param[in] i2cp pointer to the @p I2CDriver object
* @param[in] i2cscfg pointer to the @p I2CSlaveConfig object
* @param[in] restart bool. If TRUE then generate restart condition insted of stop
*/
void i2c_lld_master_transmit(I2CDriver *i2cp, I2CSlaveConfig *i2cscfg, bool_t restart) {
//TODO: check txbytes <= sizeof(i2cscfg->txbuf) here, or in hylevel API
int i = 0;
i2cp->id_slave_config = i2cscfg;
i2cp->id_slave_config->rw_bit = I2C_WRITE;
i2cp->id_i2c->CR1 |= I2C_CR1_START; // generate start condition
while (!(i2cp->id_i2c->SR1 & I2C_SR1_SB)){
i++; // wait Address sent
}
i2cp->id_i2c->DR = (i2cp->id_slave_config->slave_addr1 << 1) | I2C_WRITE; // write slave addres in DR
while (!(i2cp->id_i2c->SR1 & I2C_SR1_ADDR)){
i++; // wait Address sent
}
i = i2cp->id_i2c->SR2; // TODO: check is it need to read this register for I2C to proper functionality
i = i2cp->id_i2c->SR1; //i2cp->id_i2c->SR1 &= (~I2C_SR1_ADDR); // clear ADDR bit
// now write data byte by byte in DR register
uint32_t n = 0;
for (n = 0; n < i2cp->id_slave_config->txbytes; n++){
i2cp->id_i2c->DR = i2cscfg->txbuf[n];
while (!(i2cp->id_i2c->SR1 & I2C_SR1_TXE)){
i++;
}
}
while (!(i2cp->id_i2c->SR1 & I2C_SR1_BTF)){
i++;
}
if (restart){
i2cp->id_i2c->CR1 |= I2C_CR1_START; // generate restart condition
while (!(i2cp->id_i2c->SR1 & I2C_SR1_SB)){
i++; // wait start bit
}
}
else i2cp->id_i2c->CR1 |= I2C_CR1_STOP; // generate stop condition
}
/**
* @brief Receives data from the I2C bus.
* @details Before receive data from I2C slave you must manually sent them some
* control bytes first (refer to you device datasheet).
*
* @param[in] i2cp pointer to the @p I2CDriver object
* @param[in] i2cscfg pointer to the @p I2CSlaveConfig object
*/
void i2c_lld_master_receive(I2CDriver *i2cp, I2CSlaveConfig *i2cscfg) {
chSysLock();
i2cp->id_slave_config = i2cscfg;
uint16_t i = 0;
uint16_t tmp = 0;
// send slave addres with read-bit
i2cp->id_i2c->DR = (i2cp->id_slave_config->slave_addr1 << 1) | I2C_READ;
while (!(i2cp->id_i2c->SR1 & I2C_SR1_ADDR)){
i++; // wait Address sent
}
i = i2cp->id_i2c->SR2; // TODO: check is it need to read this register for I2C to proper functionality
i = i2cp->id_i2c->SR1; //i2cp->id_i2c->SR1 &= (~I2C_SR1_ADDR); // clear ADDR bit
// set ACK bit
i2cp->id_i2c->CR1 |= I2C_CR1_ACK;
// collect data from slave
for (i = 0; i < i2cp->id_slave_config->rxbytes; i++){
if ((i2cp->id_slave_config->rxbytes - i) == 1){ // TODO: is it better <= in place of == ?
// clear ACK bit for automatically send NACK
i2cp->id_i2c->CR1 &= (~I2C_CR1_ACK);}
while (!(i2cp->id_i2c->SR1 & I2C_SR1_RXNE)){
tmp++;
}
i2cp->id_slave_config->rxbuf[i] = i2cp->id_i2c->DR;
}
// generate STOP
i2cp->id_i2c->CR1 |= I2C_CR1_STOP;
chSysUnlock();
}
#endif // HAL_USE_I2C