rusefi/firmware/util/histogram.c

164 lines
4.0 KiB
C
Raw Normal View History

2015-07-10 06:01:56 -07:00
/**
* @file histogram.c
* @brief This data structure is used to analyze CPU performance
*
* Histogram is a data structure which simplifies CPU performance monitoring and trobleshooting by tracking the min, max
* and a couple of median values for a series of measurments.
*
* @date Dec 18, 2013
* @author Andrey Belomutskiy, (c) 2012-2015
*/
#include <string.h>
#include "histogram.h"
#include "main.h"
#if EFI_HISTOGRAMS
#define H_ACCURACY 0.05
#define H_CONFIDENCE 0.8
#define LONG_MAX_INT 0x7fffffffffffffffL
#define SBI_SIZE 1000
static float confidence_bounds[] = { 0.5 - H_CONFIDENCE * 0.5, 0.5, 0.5 + H_CONFIDENCE * 0.5 };
/**
* magic curve lookup table
*/
static int64_t bounds[BOUND_LENGTH] CCM_OPTIONAL;
/**
* just an optimization - faster lookup for small values
*/
static int small_bounds_index[SBI_SIZE];
static int initialized = FALSE;
/**
* @breif Internal histogram data structure
*/
void initHistogramsModule(void) {
bounds[0] = 0;
for (int i = 1; i < BOUND_LENGTH; i++) {
int64_t prev = bounds[i - 1];
int64_t next = prev + (int64_t) ((double) prev * H_ACCURACY);
if (next == prev) // Ensure minimum step for small numbers.
next = prev + 1;
if (next < prev) // Overflow over Long.MAX_VALUE occurred.
next = LONG_MAX_INT;
bounds[i] = next;
}
bounds[BOUND_LENGTH - 1] = LONG_MAX_INT;
for (int i = 0, j = 0; j < SBI_SIZE; i++)
while (j < bounds[i + 1] && j < SBI_SIZE)
small_bounds_index[j++] = i;
initialized = TRUE;
}
/**
* @brief This internal method is only public so that we can test it.
*/
int histogramGetIndex(int64_t value) {
efiAssert(initialized, "histo initialized", 0);
if (value < 0)
return 0;
if (value < SBI_SIZE)
return small_bounds_index[(int) value];
int l = small_bounds_index[SBI_SIZE - 1];
int r = BOUND_LENGTH - 1;
while (l < r) {
int m = (l + r) >> 1;
if (bounds[m] > value)
r = m - 1;
else if (bounds[m + 1] <= value)
l = m + 1;
else
return m;
}
return l;
}
/**
* @brief Reset histogram_s to orignal state
*/
void initHistogram(histogram_s *h, const char *name) {
if (efiStrlen(name) > sizeof(h->name) - 1) {
firmwareError("Histogram name [%s] too long", name);
}
strcpy(h->name, name);
h->total_value = 0;
h->total_count = 0;
memset(h->values, 0, sizeof(h->values));
}
/**
* @breif Add a new value into histogram_s
*/
void hsAdd(histogram_s *h, int64_t value) {
int index = histogramGetIndex(value);
int count = 1;
h->total_value += value;
h->total_count += count;
efiAssertVoid(index < BOUND_LENGTH, "histogram issue");
h->values[index] += count;
}
/**
* @brief Prepare histogram report
* @note This report should be displayed using 'printHistogram' method
*/
int hsReport(histogram_s *h, int* report) {
int index = 0;
if (h->total_count <= 5) {
for (int j = 0; j < BOUND_LENGTH; j++) {
for (int k = 0; k < h->values[j]; k++) {
report[index++] = (bounds[j] + bounds[j + 1]) / 2;
}
}
return index;
}
int minIndex = 0;
while (h->values[minIndex] == 0) {
minIndex++;
}
report[index++] = h->values[minIndex];
int64_t acc = 0;
// 'acc' is accumulated number of samples in [0, min - 1].
for (int j = 0; j < 3; j++) {
int64_t k = confidence_bounds[j] * h->total_count;
// Always drop at least 1 'non-confident' sample...
if (k == 0) {
k = 1;
}
if (k == h->total_count) {
k = h->total_count - 1;
}
// 'k' is desired number of samples.
while (acc + h->values[minIndex] < k)
acc += h->values[minIndex++];
if (k < h->total_count / 2) // Converge to median (from left).
while (acc + h->values[minIndex] <= k)
acc += h->values[minIndex++];
// Now: acc <= k <= acc + st.histogram[min]
// And desired number of samples is within [min, min + 1)
float d = bounds[minIndex];
if (acc != k)
d += (bounds[minIndex + 1] - 1 - bounds[minIndex]) * (k - acc) / h->values[minIndex];
report[index++] = (int) d;
}
int maxIndex = BOUND_LENGTH - 1;
while (h->values[maxIndex] == 0)
maxIndex--;
int64_t maxValue = bounds[maxIndex + 1] - 1;
report[index++] = maxValue;
return index;
}
#endif /* EFI_HISTOGRAMS */