/** * @file trigger_decoder.cpp * * @date Dec 24, 2013 * @author Andrey Belomutskiy, (c) 2012-2014 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "main.h" #include "obd_error_codes.h" #include "trigger_decoder.h" #include "cyclic_buffer.h" #include "trigger_mazda.h" #include "trigger_chrysler.h" #include "trigger_gm.h" #include "trigger_bmw.h" #include "trigger_mitsubishi.h" #include "trigger_structure.h" #include "efiGpio.h" #include "engine.h" EXTERN_ENGINE; // todo: better name for this constant #define HELPER_PERIOD 100000 static cyclic_buffer errorDetection; #if ! EFI_PROD_CODE bool printGapRatio = false; #endif /* ! EFI_PROD_CODE */ #if (EFI_PROD_CODE || EFI_SIMULATOR) static Logging logger; #endif /** * @return TRUE is something is wrong with trigger decoding */ bool_t isTriggerDecoderError(void) { return errorDetection.sum(6) > 4; } float TriggerState::getTriggerDutyCycle(int index) { float time = prevTotalTime[index]; return 100 * time / prevCycleDuration; } static trigger_wheel_e eventIndex[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 }; static trigger_value_e eventType[6] = { TV_LOW, TV_HIGH, TV_LOW, TV_HIGH, TV_LOW, TV_HIGH }; #define getCurrentGapDuration(nowNt) \ (isFirstEvent ? 0 : (nowNt) - toothed_previous_time) #define nextTriggerEvent() \ { \ uint64_t prevTime = timeOfPreviousEventNt[triggerWheel]; \ if (prevTime != 0) { \ /* even event - apply the value*/ \ totalTimeNt[triggerWheel] += (nowNt - prevTime); \ timeOfPreviousEventNt[triggerWheel] = 0; \ } else { \ /* odd event - start accumulation */ \ timeOfPreviousEventNt[triggerWheel] = nowNt; \ } \ current_index++; \ } #define nextRevolution() { \ if (cycleCallback != NULL) { \ cycleCallback(this); \ } \ memcpy(prevTotalTime, totalTimeNt, sizeof(prevTotalTime)); \ prevCycleDuration = nowNt - startOfCycleNt; \ startOfCycleNt = nowNt; \ clear(); \ totalRevolutionCounter++; \ totalEventCountBase += TRIGGER_SHAPE(size); \ } /** * @brief Trigger decoding happens here * This method changes the state of trigger_state_s data structure according to the trigger event */ void TriggerState::decodeTriggerEvent( trigger_event_e const signal, uint64_t nowNt DECLARE_ENGINE_PARAMETER_S) { efiAssertVoid(signal <= SHAFT_3RD_UP, "unexpected signal"); trigger_wheel_e triggerWheel = eventIndex[signal]; if (curSignal == prevSignal) { orderingErrorCounter++; } prevSignal = curSignal; curSignal = signal; eventCount[triggerWheel]++; eventCountExt[signal]++; int isLessImportant = (TRIGGER_SHAPE(useRiseEdge) && signal != SHAFT_PRIMARY_UP) || (!TRIGGER_SHAPE(useRiseEdge) && signal != SHAFT_PRIMARY_DOWN); uint64_t currentDurationLong = getCurrentGapDuration(nowNt); /** * For performance reasons, we want to work with 32 bit values. If there has been more then * 10 seconds since previous trigger event we do not really care. */ currentDuration = currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong; if (isLessImportant) { /** * For less important events we simply increment the index. */ nextTriggerEvent(); if (TRIGGER_SHAPE(gapBothDirections)) { toothed_previous_duration = currentDuration; isFirstEvent = false; toothed_previous_time = nowNt; } return; } isFirstEvent = false; // todo: skip a number of signal from the beginning #if EFI_PROD_CODE // scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration); // scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration); #else if (toothed_previous_duration != 0) { // printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration, // currentDuration, shaftPositionState->toothed_previous_duration); } #endif bool_t isSynchronizationPoint; if (TRIGGER_SHAPE(isSynchronizationNeeded)) { #if ! EFI_PROD_CODE if (printGapRatio) { float gap = 1.0 * currentDuration / toothed_previous_duration; print("current gap %f\r\n", gap); } #else // float gap = 1.0 * currentDuration / shaftPositionState->toothed_previous_duration; // scheduleMsg(&logger, "gap=%f @ %d", gap, shaftPositionState->getCurrentIndex()); #endif /* ! EFI_PROD_CODE */ isSynchronizationPoint = currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom) && currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo); } else { /** * in case of noise the counter could be above the expected number of events */ isSynchronizationPoint = !shaft_is_synchronized || (current_index >= TRIGGER_SHAPE(size) - 1); } if (isSynchronizationPoint) { /** * We can check if things are fine by comparing the number of events in a cycle with the expected number of event. */ bool isDecodingError = eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0]) || eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1]) || eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]); setOutputPinValue(LED_TRIGGER_ERROR, isDecodingError); if (isDecodingError) { totalTriggerErrorCounter++; } errorDetection.add(isDecodingError); if (isTriggerDecoderError()) { warning(OBD_PCM_Processor_Fault, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d", TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), eventCount[0], eventCount[1], eventCount[2]); } shaft_is_synchronized = true; // this call would update duty cycle values nextTriggerEvent(); nextRevolution(); } else { nextTriggerEvent(); } toothed_previous_duration = currentDuration; toothed_previous_time = nowNt; } static void initializeSkippedToothTriggerShape(trigger_shape_s *s, int totalTeethCount, int skippedCount, operation_mode_e operationMode) { efiAssertVoid(s != NULL, "trigger_shape_s is NULL"); s->reset(operationMode); float toothWidth = 0.5; for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) { float angleDown = 720.0 / totalTeethCount * (i + toothWidth); float angleUp = 720.0 / totalTeethCount * (i + 1); s->addEvent(angleDown, T_PRIMARY, TV_HIGH); s->addEvent(angleUp, T_PRIMARY, TV_LOW); } float angleDown = 720.0 / totalTeethCount * (totalTeethCount - skippedCount - 1 + toothWidth); s->addEvent(angleDown, T_PRIMARY, TV_HIGH); s->addEvent(720, T_PRIMARY, TV_LOW); } void initializeSkippedToothTriggerShapeExt(trigger_shape_s *s, int totalTeethCount, int skippedCount, operation_mode_e operationMode) { efiAssertVoid(totalTeethCount > 0, "totalTeethCount is zero"); s->totalToothCount = totalTeethCount; s->skippedToothCount = skippedCount; initializeSkippedToothTriggerShape(s, totalTeethCount, skippedCount, operationMode); } /** * External logger is needed because at this point our logger is not yet initialized */ void initializeTriggerShape(Logging *logger, engine_configuration_s const *engineConfiguration, Engine *engine) { #if EFI_PROD_CODE scheduleMsg(logger, "initializeTriggerShape()"); #endif const trigger_config_s *triggerConfig = &engineConfiguration->triggerConfig; trigger_shape_s *triggerShape = &engine->triggerShape; setTriggerSynchronizationGap(triggerShape, 2); triggerShape->useRiseEdge = true; switch (triggerConfig->triggerType) { case TT_TOOTHED_WHEEL: // todo: move to into configuration definition engineConfiguration2->triggerShape.needSecondTriggerInput = false; triggerShape->isSynchronizationNeeded = engineConfiguration->triggerConfig.customIsSynchronizationNeeded; initializeSkippedToothTriggerShapeExt(triggerShape, triggerConfig->customTotalToothCount, triggerConfig->customSkippedToothCount, getOperationMode(engineConfiguration)); break; case TT_MAZDA_MIATA_NA: initializeMazdaMiataNaShape(triggerShape); break; case TT_MAZDA_MIATA_NB: initializeMazdaMiataNbShape(triggerShape); break; case TT_DODGE_NEON_1995: configureNeon1995TriggerShape(triggerShape); break; case TT_DODGE_NEON_2003: configureNeon2003TriggerShape(triggerShape); break; case TT_FORD_ASPIRE: configureFordAspireTriggerShape(triggerShape); break; case TT_GM_7X: configureGmTriggerShape(triggerShape); break; case TT_FORD_ESCORT_GT: configureMazdaProtegeLx(triggerShape); break; case TT_MINI_COOPER_R50: configureMiniCooperTriggerShape(triggerShape); break; case TT_TOOTHED_WHEEL_60_2: setToothedWheelConfiguration(triggerShape, 60, 2, engineConfiguration); setTriggerSynchronizationGap(triggerShape, 3); break; case TT_TOOTHED_WHEEL_36_1: setToothedWheelConfiguration(triggerShape, 36, 1, engineConfiguration); break; case TT_HONDA_ACCORD_CD_TWO_WIRES: configureHondaAccordCD(triggerShape, false); break; case TT_HONDA_ACCORD_CD: configureHondaAccordCD(triggerShape, true); break; case TT_HONDA_ACCORD_CD_DIP: configureHondaAccordCDDip(triggerShape); break; case TT_MITSU: initializeMitsubishi4g18(triggerShape); break; default: firmwareError("initializeTriggerShape() not implemented: %d", triggerConfig->triggerType); ; return; } triggerShape->wave.checkSwitchTimes(triggerShape->getSize()); } TriggerStimulatorHelper::TriggerStimulatorHelper() { primaryWheelState = false; secondaryWheelState = false; thirdWheelState = false; } void TriggerStimulatorHelper::nextStep(TriggerState *state, trigger_shape_s * shape, int i, trigger_config_s const*triggerConfig DECLARE_ENGINE_PARAMETER_S) { int stateIndex = i % shape->getSize(); int loopIndex = i / shape->getSize(); int time = (int) (HELPER_PERIOD * (loopIndex + shape->wave.getSwitchTime(stateIndex))); bool newPrimaryWheelState = shape->wave.getChannelState(0, stateIndex); bool newSecondaryWheelState = shape->wave.getChannelState(1, stateIndex); bool new3rdWheelState = shape->wave.getChannelState(2, stateIndex); if (primaryWheelState != newPrimaryWheelState) { primaryWheelState = newPrimaryWheelState; trigger_event_e s = primaryWheelState ? SHAFT_PRIMARY_UP : SHAFT_PRIMARY_DOWN; state->decodeTriggerEvent(s, time PASS_ENGINE_PARAMETER); } if (secondaryWheelState != newSecondaryWheelState) { secondaryWheelState = newSecondaryWheelState; trigger_event_e s = secondaryWheelState ? SHAFT_SECONDARY_UP : SHAFT_SECONDARY_DOWN; state->decodeTriggerEvent(s, time PASS_ENGINE_PARAMETER); } if (thirdWheelState != new3rdWheelState) { thirdWheelState = new3rdWheelState; trigger_event_e s = thirdWheelState ? SHAFT_3RD_UP : SHAFT_3RD_DOWN; state->decodeTriggerEvent(s, time PASS_ENGINE_PARAMETER); } } static void onFindIndex(TriggerState *state) { for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { // todo: that's not the best place for this intermediate data storage, fix it! state->expectedTotalTime[i] = state->totalTimeNt[i]; } } static uint32_t doFindTrigger(TriggerStimulatorHelper *helper, trigger_shape_s * shape, trigger_config_s const*triggerConfig, TriggerState *state DECLARE_ENGINE_PARAMETER_S) { for (int i = 0; i < 4 * PWM_PHASE_MAX_COUNT; i++) { helper->nextStep(state, shape, i, triggerConfig PASS_ENGINE_PARAMETER); if (state->shaft_is_synchronized) return i; } firmwareError("findTriggerZeroEventIndex() failed"); return EFI_ERROR_CODE; } /** * Trigger shape is defined in a way which is convenient for trigger shape definition * On the other hand, trigger decoder indexing begins from synchronization event. * * This function finds the index of synchronization event within trigger_shape_s */ uint32_t findTriggerZeroEventIndex(trigger_shape_s * shape, trigger_config_s const*triggerConfig DECLARE_ENGINE_PARAMETER_S) { TriggerState state; errorDetection.clear(); TriggerStimulatorHelper helper; uint32_t index = doFindTrigger(&helper, shape, triggerConfig, &state PASS_ENGINE_PARAMETER); if (index == EFI_ERROR_CODE) { return index; } efiAssert(state.getTotalRevolutionCounter() == 1, "totalRevolutionCounter", EFI_ERROR_CODE); /** * Now that we have just located the synch point, we can simulate the whole cycle * in order to calculate expected duty cycle * * todo: add a comment why are we doing '2 * shape->getSize()' here? */ state.cycleCallback = onFindIndex; for (uint32_t i = index + 1; i <= index + 2 * shape->getSize(); i++) { helper.nextStep(&state, shape, i, triggerConfig PASS_ENGINE_PARAMETER); } efiAssert(state.getTotalRevolutionCounter() == 3, "totalRevolutionCounter2", EFI_ERROR_CODE); for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { shape->dutyCycle[i] = 1.0 * state.expectedTotalTime[i] / HELPER_PERIOD; } return index % shape->getSize(); } #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) //static Logging logger; #endif void initTriggerDecoder(void) { #if (EFI_PROD_CODE || EFI_SIMULATOR) initLogging(&logger, "trigger decoder"); #endif }