/** * @file engine_configuration.cpp * @brief Utility method related to the engine configuration data structure. * * @date Nov 22, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . * */ #include "pch.h" #include "speed_density.h" #include "advance_map.h" #include "flash_main.h" #include "bench_test.h" #if EFI_MEMS #include "accelerometer.h" #endif #include "defaults.h" #include "bmw_m73.h" #include "bmw_n73.h" #include "citroenBerlingoTU3JP.h" #include "custom_engine.h" #include "dodge_neon.h" #include "dodge_ram.h" #include "engine_template.h" #include "ford_aspire.h" #include "ford_1995_inline_6.h" #include "honda_k_dbc.h" #include "honda_600.h" #include "hyundai.h" #include "GY6_139QMB.h" #include "nissan_primera.h" #include "nissan_vq.h" #include "mazda_miata.h" #include "mazda_miata_1_6.h" #include "mazda_miata_na8.h" #include "mazda_miata_vvt.h" #include "mazda_626.h" #include "m111.h" #include "mercedes.h" #include "mitsubishi.h" #include "gm_ls_4.h" #include "subaru.h" #include "test_engine.h" #include "sachs.h" #include "vw.h" #include "vw_b6.h" #include "chevrolet_camaro_4.h" #include "toyota_jzs147.h" #include "ford_festiva.h" #include "boost_control.h" #if EFI_IDLE_CONTROL #include "idle_thread.h" #endif /* EFI_IDLE_CONTROL */ #if EFI_ALTERNATOR_CONTROL #include "alternator_controller.h" #endif #if EFI_ELECTRONIC_THROTTLE_BODY #include "electronic_throttle.h" #endif #if EFI_HIP_9011 #include "hip9011.h" #endif #include "hardware.h" #if EFI_PROD_CODE #include "board.h" #endif /* EFI_PROD_CODE */ #if EFI_EMULATE_POSITION_SENSORS #include "trigger_emulator_algo.h" #endif /* EFI_EMULATE_POSITION_SENSORS */ #if EFI_TUNER_STUDIO #include "tunerstudio.h" #endif //#define TS_DEFAULT_SPEED 115200 #define TS_DEFAULT_SPEED 38400 /** * Current engine configuration. On firmware start we assign empty configuration, then * we copy actual configuration after reading settings from flash. * This is useful to compare old/current (activeConfiguration) and new/future (engineConfiguration) configurations in order to apply new settings. * * todo: place this field next to 'engineConfiguration'? */ #if EFI_ACTIVE_CONFIGURATION_IN_FLASH #include "flash_int.h" engine_configuration_s & activeConfiguration = reinterpret_cast(getFlashAddrFirstCopy())->persistentConfiguration.engineConfiguration; // we cannot use this activeConfiguration until we call rememberCurrentConfiguration() bool isActiveConfigurationVoid = true; #else static engine_configuration_s activeConfigurationLocalStorage; engine_configuration_s & activeConfiguration = activeConfigurationLocalStorage; #endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */ void rememberCurrentConfiguration() { #if ! EFI_ACTIVE_CONFIGURATION_IN_FLASH memcpy(&activeConfiguration, engineConfiguration, sizeof(engine_configuration_s)); #else isActiveConfigurationVoid = false; #endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */ } static void wipeString(char *string, int size) { // we have to reset bytes after \0 symbol in order to calculate correct tune CRC from MSQ file for (int i = strlen(string) + 1; i < size; i++) { string[i] = 0; } } static void wipeStrings() { wipeString(engineConfiguration->engineMake, sizeof(vehicle_info_t)); wipeString(engineConfiguration->engineCode, sizeof(vehicle_info_t)); wipeString(engineConfiguration->vehicleName, sizeof(vehicle_info_t)); } void onBurnRequest() { wipeStrings(); incrementGlobalConfigurationVersion(); } // Weak link a stub so that every board doesn't have to implement this function __attribute__((weak)) void boardOnConfigurationChange(engine_configuration_s* /*previousConfiguration*/) { } /** * this is the top-level method which should be called in case of any changes to engine configuration * online tuning of most values in the maps does not count as configuration change, but 'Burn' command does * * this method is NOT currently invoked on ECU start - actual user input has to happen! * See preCalculate which is invoked BOTH on start and configuration change */ void incrementGlobalConfigurationVersion() { engine->globalConfigurationVersion++; #if EFI_DEFAILED_LOGGING efiPrintf("set globalConfigurationVersion=%d", globalConfigurationVersion); #endif /* EFI_DEFAILED_LOGGING */ applyNewHardwareSettings(); boardOnConfigurationChange(&activeConfiguration); /** * All these callbacks could be implemented as listeners, but these days I am saving RAM */ engine->preCalculate(); #if EFI_ALTERNATOR_CONTROL onConfigurationChangeAlternatorCallback(&activeConfiguration); #endif /* EFI_ALTERNATOR_CONTROL */ #if EFI_BOOST_CONTROL onConfigurationChangeBoostCallback(&activeConfiguration); #endif #if EFI_ELECTRONIC_THROTTLE_BODY onConfigurationChangeElectronicThrottleCallback(&activeConfiguration); #endif /* EFI_ELECTRONIC_THROTTLE_BODY */ #if EFI_ENGINE_CONTROL && EFI_PROD_CODE onConfigurationChangeBenchTest(); #endif #if EFI_SHAFT_POSITION_INPUT onConfigurationChangeTriggerCallback(); #endif /* EFI_SHAFT_POSITION_INPUT */ #if EFI_EMULATE_POSITION_SENSORS && ! EFI_UNIT_TEST onConfigurationChangeRpmEmulatorCallback(&activeConfiguration); #endif /* EFI_EMULATE_POSITION_SENSORS */ engine->engineModules.apply_all([](auto & m) { m.onConfigurationChange(&activeConfiguration); }); rememberCurrentConfiguration(); } /** * @brief Sets the same dwell time across the whole getRpm() range * set dwell X */ void setConstantDwell(floatms_t dwellMs) { for (int i = 0; i < DWELL_CURVE_SIZE; i++) { config->sparkDwellRpmBins[i] = 1000 * i; } setArrayValues(config->sparkDwellValues, dwellMs); } void setWholeIgnitionIatCorr(float value) { setTable(config->ignitionIatCorrTable, value); } void setFuelTablesLoadBin(float minValue, float maxValue) { setLinearCurve(config->injPhaseLoadBins, minValue, maxValue, 1); setLinearCurve(config->veLoadBins, minValue, maxValue, 1); setLinearCurve(config->lambdaLoadBins, minValue, maxValue, 1); } void setWholeIatCorrTimingTable(float value) { setTable(config->ignitionIatCorrTable, value); } /** * See also crankingTimingAngle */ void setWholeTimingTable_d(angle_t value) { setTable(config->ignitionTable, value); } static void initTemperatureCurve(float *bins, float *values, int size, float defaultValue) { for (int i = 0; i < size; i++) { bins[i] = -40 + i * 10; values[i] = defaultValue; // this correction is a multiplier } } void prepareVoidConfiguration(engine_configuration_s *engineConfiguration) { efiAssertVoid(OBD_PCM_Processor_Fault, engineConfiguration != NULL, "ec NULL"); efi::clear(engineConfiguration); engineConfiguration->clutchDownPinMode = PI_PULLUP; engineConfiguration->clutchUpPinMode = PI_PULLUP; engineConfiguration->brakePedalPinMode = PI_PULLUP; } void setDefaultBasePins() { #ifdef EFI_WARNING_PIN engineConfiguration->warningLedPin = EFI_WARNING_PIN; #else engineConfiguration->warningLedPin = Gpio::D13; // orange LED on discovery #endif #ifdef EFI_COMMUNICATION_PIN engineConfiguration->communicationLedPin = EFI_COMMUNICATION_PIN; #else engineConfiguration->communicationLedPin = Gpio::D15; // blue LED on discovery #endif #ifdef EFI_RUNNING_PIN engineConfiguration->runningLedPin = EFI_RUNNING_PIN; #else engineConfiguration->runningLedPin = Gpio::D12; // green LED on discovery #endif #if EFI_PROD_CODE // call overrided board-specific serial configuration setup, if needed (for custom boards only) // needed also by bootloader code setPinConfigurationOverrides(); #endif /* EFI_PROD_CODE */ // set UART pads configuration based on the board // needed also by bootloader code engineConfiguration->binarySerialTxPin = Gpio::C10; engineConfiguration->binarySerialRxPin = Gpio::C11; engineConfiguration->tunerStudioSerialSpeed = TS_DEFAULT_SPEED; engineConfiguration->uartConsoleSerialSpeed = 115200; } // needed also by bootloader code // at the moment bootloader does NOT really need SD card, this is a step towards future bootloader SD card usage void setDefaultSdCardParameters() { engineConfiguration->isSdCardEnabled = true; } static void setDefaultWarmupIdleCorrection() { initTemperatureCurve(CLT_MANUAL_IDLE_CORRECTION, 1.0); float baseIdle = 30; setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -40, 1.5); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -30, 1.5); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -20, 40.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -10, 40.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 0, 40.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 10, 40.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 20, 40.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 30, 40.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 40, 40.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 50, 37.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 60, 35.0 / baseIdle); setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 70, 33.0 / baseIdle); } /** * see also setTargetRpmCurve() */ static void setDefaultIdleSpeedTarget() { copyArray(config->cltIdleRpmBins, { -30, - 20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 , 110, 120 }); copyArray(config->cltIdleRpm, { 1350, 1350, 1300, 1200, 1150, 1100, 1050, 1000, 1000, 950, 950, 930, 900, 900, 1000, 1100 }); } /** * see also setDefaultIdleSpeedTarget() */ void setTargetRpmCurve(int rpm) { setLinearCurve(config->cltIdleRpmBins, CLT_CURVE_RANGE_FROM, 140, 10); setLinearCurve(config->cltIdleRpm, rpm, rpm, 10); } void setDefaultGppwmParameters() { // Same config for all channels for (size_t i = 0; i < efi::size(engineConfiguration->gppwm); i++) { auto& cfg = engineConfiguration->gppwm[i]; chsnprintf(engineConfiguration->gpPwmNote[i], sizeof(engineConfiguration->gpPwmNote[0]), "GPPWM%d", i); cfg.pin = Gpio::Unassigned; cfg.dutyIfError = 0; cfg.onAboveDuty = 60; cfg.offBelowDuty = 50; cfg.pwmFrequency = 250; for (size_t j = 0; j < efi::size(cfg.loadBins); j++) { uint8_t z = j * 100 / (efi::size(cfg.loadBins) - 1); cfg.loadBins[j] = z; // Fill some values in the table for (size_t k = 0; k < efi::size(cfg.rpmBins); k++) { cfg.table[j][k] = z; } } for (size_t j = 0; j < efi::size(cfg.rpmBins); j++) { cfg.rpmBins[j] = 1000 * j; } } } static void setDefaultEngineNoiseTable() { setRpmTableBin(engineConfiguration->knockNoiseRpmBins); engineConfiguration->knockSamplingDuration = 45; setArrayValues(engineConfiguration->knockBaseNoise, -20); } /** * @brief Global default engine configuration * This method sets the global engine configuration defaults. These default values are then * overridden by engine-specific defaults and the settings are saved in flash memory. * * This method is invoked only when new configuration is needed: * * recently re-flashed chip * * flash version of configuration failed CRC check or appears to be older then FLASH_DATA_VERSION * * 'rewriteconfig' command * * 'set engine_type X' command * * This method should only change the state of the configuration data structure but should NOT change the state of * anything else. * * This method should NOT be setting any default pinout */ static void setDefaultEngineConfiguration() { #if (! EFI_UNIT_TEST) efi::clear(persistentState.persistentConfiguration); #endif prepareVoidConfiguration(engineConfiguration); setDefaultBaseEngine(); setDefaultFuel(); setDefaultIgnition(); setDefaultCranking(); // VVT closed loop, totally random values! engineConfiguration->auxPid[0].pFactor = 2; engineConfiguration->auxPid[0].iFactor = 0.005; engineConfiguration->auxPid[0].dFactor = 0; engineConfiguration->auxPid[0].offset = 33; engineConfiguration->auxPid[0].minValue = 10; engineConfiguration->auxPid[0].maxValue = 90; engineConfiguration->vvtOutputFrequency[0] = 300; // VVT solenoid control engineConfiguration->isCylinderCleanupEnabled = true; engineConfiguration->auxPid[1].minValue = 10; engineConfiguration->auxPid[1].maxValue = 90; engineConfiguration->turboSpeedSensorMultiplier = 1; #if EFI_IDLE_CONTROL setDefaultIdleParameters(); #endif /* EFI_IDLE_CONTROL */ #if EFI_ELECTRONIC_THROTTLE_BODY setDefaultEtbParameters(); setDefaultEtbBiasCurve(); #endif /* EFI_ELECTRONIC_THROTTLE_BODY */ #if EFI_BOOST_CONTROL setDefaultBoostParameters(); #endif // OBD-II default rate is 500kbps engineConfiguration->canBaudRate = B500KBPS; engineConfiguration->can2BaudRate = B500KBPS; engineConfiguration->mafSensorType = Bosch0280218037; setBosch0280218037(config); engineConfiguration->canSleepPeriodMs = 50; engineConfiguration->canReadEnabled = true; engineConfiguration->canWriteEnabled = true; // Don't enable, but set default address engineConfiguration->verboseCanBaseAddress = CAN_DEFAULT_BASE; engineConfiguration->sdCardLogFrequency = 50; engineConfiguration->mapMinBufferLength = 1; engineConfiguration->vvtActivationDelayMs = 6000; engineConfiguration->startCrankingDuration = 3; engineConfiguration->maxAcRpm = 5000; engineConfiguration->maxAcClt = 100; engineConfiguration->maxAcTps = 75; initTemperatureCurve(IAT_FUEL_CORRECTION_CURVE, 1); engineConfiguration->auxPid[0].minValue = 10; engineConfiguration->auxPid[0].maxValue = 90; engineConfiguration->alternatorControl.minValue = 0; engineConfiguration->alternatorControl.maxValue = 90; setLinearCurve(config->scriptCurve1Bins, 0, 100, 1); setLinearCurve(config->scriptCurve1, 0, 100, 1); setLinearCurve(config->scriptCurve2Bins, 0, 100, 1); setLinearCurve(config->scriptCurve2, 30, 170, 1); setLinearCurve(config->scriptCurve3Bins, 0, 100, 1); setLinearCurve(config->scriptCurve4Bins, 0, 100, 1); setLinearCurve(config->scriptCurve5Bins, 0, 100, 1); setLinearCurve(config->scriptCurve6Bins, 0, 100, 1); setLinearCurve(config->alsIgnRetardLoadBins, 2, 10, 1); setRpmTableBin(config->alsIgnRetardrpmBins); setLinearCurve(config->alsFuelAdjustmentLoadBins, 2, 10, 1); setRpmTableBin(config->alsFuelAdjustmentrpmBins); #if EFI_ENGINE_CONTROL setDefaultWarmupIdleCorrection(); setLinearCurve(engineConfiguration->map.samplingAngleBins, 800, 7000, 1); setLinearCurve(engineConfiguration->map.samplingAngle, 100, 130, 1); setLinearCurve(engineConfiguration->map.samplingWindowBins, 800, 7000, 1); setLinearCurve(engineConfiguration->map.samplingWindow, 50, 50, 1); setLinearCurve(config->vvtTable1LoadBins, 20, 120, 10); setRpmTableBin(config->vvtTable1RpmBins); setLinearCurve(config->vvtTable2LoadBins, 20, 120, 10); setRpmTableBin(config->vvtTable2RpmBins); setLinearCurve(config->scriptTable1LoadBins, 20, 120, 10); setRpmTableBin(config->scriptTable1RpmBins); setLinearCurve(config->scriptTable2LoadBins, 20, 120, 10); setRpmTableBin(config->scriptTable2RpmBins); setLinearCurve(config->scriptTable3LoadBins, 20, 120, 10); setRpmTableBin(config->scriptTable3RpmBins); setLinearCurve(config->scriptTable4LoadBins, 20, 120, 10); setRpmTableBin(config->scriptTable4RpmBins); setDefaultEngineNoiseTable(); engineConfiguration->clt.config = {0, 23.8889, 48.8889, 9500, 2100, 1000, 1500}; // todo: this value is way off! I am pretty sure temp coeffs are off also engineConfiguration->iat.config = {32, 75, 120, 9500, 2100, 1000, 2700}; // wow unit tests have much cooler setDefaultLaunchParameters method engineConfiguration->launchRpm = 3000; // engineConfiguration->launchTimingRetard = 10; engineConfiguration->launchTimingRpmRange = 500; engineConfiguration->launchSpeedThreshold = 30; engineConfiguration->hardCutRpmRange = 500; engineConfiguration->slowAdcAlpha = 0.33333; engineConfiguration->engineSnifferRpmThreshold = 2500; engineConfiguration->sensorSnifferRpmThreshold = 2500; engineConfiguration->noAccelAfterHardLimitPeriodSecs = 3; /** * Idle control defaults */ setDefaultIdleSpeedTarget(); // setTargetRpmCurve(1200); engineConfiguration->idleRpmPid.pFactor = 0.05; engineConfiguration->idleRpmPid.iFactor = 0.002; engineConfiguration->idleRpmPid.minValue = 0; engineConfiguration->idleRpmPid.maxValue = 99; /** * between variation between different sensor and weather and fabrication tolerance * five percent looks like a safer default */ engineConfiguration->idlePidDeactivationTpsThreshold = 5; engineConfiguration->idle.solenoidFrequency = 200; // set idle_position 50 engineConfiguration->manIdlePosition = 50; // engineConfiguration->idleMode = IM_AUTO; engineConfiguration->idleMode = IM_MANUAL; engineConfiguration->useStepperIdle = false; setLinearCurve(config->iacCoastingRpmBins, 0, 8000, 1); setDefaultGppwmParameters(); #if !EFI_UNIT_TEST engineConfiguration->analogInputDividerCoefficient = 2; #endif // performance optimization engineConfiguration->sensorChartMode = SC_OFF; setTPS1Calibration(convertVoltageTo10bitADC(0), convertVoltageTo10bitADC(5), convertVoltageTo10bitADC(5), convertVoltageTo10bitADC(0)); engineConfiguration->tps2Min = convertVoltageTo10bitADC(0); engineConfiguration->tps2Max = convertVoltageTo10bitADC(5); engineConfiguration->tps2SecondaryMin = convertVoltageTo10bitADC(5); engineConfiguration->tps2SecondaryMax = convertVoltageTo10bitADC(0); engineConfiguration->idlePositionMin = PACK_MULT_VOLTAGE * 0; engineConfiguration->idlePositionMax = PACK_MULT_VOLTAGE * 5; engineConfiguration->wastegatePositionMin = PACK_MULT_VOLTAGE * 0; engineConfiguration->wastegatePositionMax = PACK_MULT_VOLTAGE * 5; engineConfiguration->tpsErrorDetectionTooLow = -10; // -10% open engineConfiguration->tpsErrorDetectionTooHigh = 110; // 110% open engineConfiguration->oilPressure.v1 = 0.5f; engineConfiguration->oilPressure.v2 = 4.5f; engineConfiguration->oilPressure.value1 = 0; engineConfiguration->oilPressure.value2 = 689.476f; // 100psi = 689.476kPa engineConfiguration->mapLowValueVoltage = 0; // todo: start using this for custom MAP engineConfiguration->mapHighValueVoltage = 5; engineConfiguration->HD44780width = 20; engineConfiguration->HD44780height = 4; engineConfiguration->cylinderBore = 87.5; setBoschHDEV_5_injectors(); setEgoSensor(ES_14Point7_Free); engineConfiguration->globalFuelCorrection = 1; engineConfiguration->adcVcc = 3.0; engineConfiguration->map.sensor.type = MT_MPX4250; engineConfiguration->baroSensor.type = MT_CUSTOM; engineConfiguration->baroSensor.lowValue = 0; engineConfiguration->baroSensor.highValue = 500; #if EFI_PROD_CODE engineConfiguration->engineChartSize = 300; #else // need more events for automated test engineConfiguration->engineChartSize = 400; #endif engineConfiguration->isMapAveragingEnabled = true; engineConfiguration->isWaveAnalyzerEnabled = true; engineConfiguration->acIdleRpmBump = 200; /* these two are used for HIP9011 only * Currently this is offset from fire event, not TDC */ /* TODO: convert to offset from TDC */ engineConfiguration->knockDetectionWindowStart = 15.0 + 5.0; engineConfiguration->knockDetectionWindowEnd = 15.0 + 45.0; /** * this is RPM. 10000 rpm is only 166Hz, 800 rpm is 13Hz */ engineConfiguration->triggerSimulatorFrequency = 1200; engineConfiguration->alternatorPwmFrequency = 300; engineConfiguration->cj125isUaDivided = true; engineConfiguration->isAlternatorControlEnabled = false; engineConfiguration->driveWheelRevPerKm = 500; engineConfiguration->vssGearRatio = 3.73; engineConfiguration->vssToothCount = 21; engineConfiguration->mapErrorDetectionTooLow = 5; // todo: default limits should be hard-coded for each sensor type // https://github.com/rusefi/rusefi/issues/4030 engineConfiguration->mapErrorDetectionTooHigh = 410; engineConfiguration->useLcdScreen = true; engineConfiguration->hip9011Gain = 1; engineConfiguration->isEngineControlEnabled = true; #endif // EFI_ENGINE_CONTROL #include "default_script.lua" } #ifdef CONFIG_RESET_SWITCH_PORT // this pin is not configurable at runtime so that we have a reliable way to reset configuration #define SHOULD_IGNORE_FLASH() (palReadPad(CONFIG_RESET_SWITCH_PORT, CONFIG_RESET_SWITCH_PIN) == 0) #else #define SHOULD_IGNORE_FLASH() (false) #endif // CONFIG_RESET_SWITCH_PORT // by default, do not ignore config from flash! use it! #ifndef IGNORE_FLASH_CONFIGURATION #define IGNORE_FLASH_CONFIGURATION false #endif void loadConfiguration() { #ifdef CONFIG_RESET_SWITCH_PORT // initialize the reset pin if necessary palSetPadMode(CONFIG_RESET_SWITCH_PORT, CONFIG_RESET_SWITCH_PIN, PAL_MODE_INPUT_PULLUP); #endif /* CONFIG_RESET_SWITCH_PORT */ #if ! EFI_ACTIVE_CONFIGURATION_IN_FLASH // Clear the active configuration so that registered output pins (etc) detect the change on startup and init properly prepareVoidConfiguration(&activeConfiguration); #endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */ #if EFI_INTERNAL_FLASH if (SHOULD_IGNORE_FLASH() || IGNORE_FLASH_CONFIGURATION) { engineConfiguration->engineType = DEFAULT_ENGINE_TYPE; resetConfigurationExt(engineConfiguration->engineType); writeToFlashNow(); } else { // this call reads configuration from flash memory or sets default configuration // if flash state does not look right. readFromFlash(); } #else // not EFI_INTERNAL_FLASH // This board doesn't load configuration, initialize the default engineConfiguration->engineType = DEFAULT_ENGINE_TYPE; resetConfigurationExt(engineConfiguration->engineType); #endif /* EFI_INTERNAL_FLASH */ // Force any board configuration options that humans shouldn't be able to change setBoardConfigOverrides(); } void resetConfigurationExt(configuration_callback_t boardCallback, engine_type_e engineType) { enginePins.reset(); // that's mostly important for functional tests /** * Let's apply global defaults first */ setDefaultEngineConfiguration(); // set initial pin groups setDefaultBasePins(); if (boardCallback != nullptr) { boardCallback(engineConfiguration); } #if EFI_PROD_CODE // call overrided board-specific configuration setup, if needed (for custom boards only) setBoardDefaultConfiguration(); setBoardConfigOverrides(); #endif engineConfiguration->engineType = engineType; /** * And override them with engine-specific defaults */ switch (engineType) { case HELLEN72_ETB: case MINIMAL_PINS: // all basic settings are already set in prepareVoidConfiguration(), no need to set anything here // nothing to do - we do it all in setBoardDefaultConfiguration break; case TEST_ENGINE: setTestCamEngineConfiguration(); break; case TEST_CRANK_ENGINE: setTestCrankEngineConfiguration(); break; #if EFI_UNIT_TEST case TEST_ISSUE_366_BOTH: setTestEngineIssue366both(); break; case TEST_ISSUE_366_RISE: setTestEngineIssue366rise(); break; #endif // EFI_UNIT_TEST #if HW_MICRO_RUSEFI case MRE_VW_B6: setMreVwPassatB6(); break; case MRE_M111: setM111EngineConfiguration(); break; case MRE_SECONDARY_CAN: mreSecondaryCan(); break; case MRE_SUBARU_EJ18: setSubaruEJ18_MRE(); break; case MRE_BOARD_NEW_TEST: mreBoardNewTest(); break; case BMW_M73_MRE: case BMW_M73_MRE_SLAVE: setEngineBMW_M73_microRusEfi(); break; case MRE_MIATA_NA6_VAF: setMiataNA6_VAF_MRE(); break; case MRE_MIATA_94_MAP: setMiata94_MAP_MRE(); break; case MRE_MIATA_NA6_MAP: setMiataNA6_MAP_MRE(); break; case MRE_MIATA_NB2_MAP: setMiataNB2_MRE_MAP(); break; case MRE_MIATA_NB2_MAF: setMiataNB2_MRE_MAF(); break; case MRE_MIATA_NB2_ETB: setMiataNB2_MRE_ETB(); break; case MRE_BODY_CONTROL: mreBCM(); break; #endif // HW_MICRO_RUSEFI #if HW_PROTEUS case PROTEUS_GM_LS_4: setProteusGmLs4(); break; case PROTEUS_VW_B6: setProteusVwPassatB6(); break; case PROTEUS_QC_TEST_BOARD: proteusBoardTest(); break; case PROTEUS_LUA_DEMO: proteusLuaDemo(); break; case PROTEUS_HARLEY: proteusHarley(); break; case PROTEUS_BMW_M73: setEngineBMW_M73_Proteus(); break; case MIATA_PROTEUS_TCU: setMiataNB2_Proteus_TCU(); break; case PROTEUS_HONDA_K: setProteusHondaElement2003(); break; case PROTEUS_HONDA_OBD2A: setProteusHondaOBD2A(); break; case PROTEUS_E65_6H_MAN_IN_THE_MIDDLE: setEngineProteusGearboxManInTheMiddle(); break; case PROTEUS_VAG_80_18T: case PROTEUS_N73: case PROTEUS_MIATA_NB2: setMiataNB2_ProteusEngineConfiguration(); break; #ifdef HARDWARE_CI case PROTEUS_ANALOG_PWM_TEST: setProteusAnalogPwmTest(); break; #endif // HARDWARE_CI #endif // HW_PROTEUS #if HW_HELLEN case HELLEN_128_MERCEDES_4_CYL: setHellenMercedes128_4_cyl(); break; case HELLEN_128_MERCEDES_6_CYL: setHellenMercedes128_6_cyl(); break; case HELLEN_128_MERCEDES_8_CYL: setHellenMercedes128_8_cyl(); break; case HELLEN_NB2: setMiataNB2_Hellen72(); break; case HELLEN_NB2_36: setMiataNB2_Hellen72_36(); break; case HELLEN_NA8_96: setHellenMiata96(); break; case HELLEN_NB1: setHellenNB1(); break; case HELLEN_121_NISSAN_4_CYL: setHellen121nissanQR(); break; case HELLEN_121_NISSAN_6_CYL: setHellen121nissanVQ(); break; case HELLEN_121_VAG_5_CYL: setHellen121Vag_5_cyl(); break; case HELLEN_121_VAG_V6_CYL: setHellen121Vag_v6_cyl(); break; case HELLEN_121_VAG_VR6_CYL: setHellen121Vag_vr6_cyl(); break; case HELLEN_121_VAG_8_CYL: setHellen121Vag_8_cyl(); break; case HELLEN_121_VAG_4_CYL: case HELLEN_55_BMW: case HELLEN_88_BMW: case HELLEN_134_BMW: case HELLEN_154_VAG: break; case HELLEN_154_HYUNDAI_COUPE_BK1: setGenesisCoupeBK1(); break; case HELLEN_154_HYUNDAI_COUPE_BK2: setGenesisCoupeBK2(); break; case HELLEN_NA6: setHellenNA6(); break; case HELLEN_NA94: setHellenNA94(); break; #endif // HW_HELLEN #if HW_FRANKENSO case DEFAULT_FRANKENSO: setFrankensoConfiguration(); break; case FRANKENSO_QA_ENGINE: setFrankensoBoardTestConfiguration(); break; case FRANKENSO_BMW_M73_F: setBMW_M73_TwoCoilUnitTest(); break; case BMW_M73_M: setEngineBMW_M73_Manhattan(); break; case DODGE_NEON_1995: setDodgeNeon1995EngineConfiguration(); break; case DODGE_NEON_2003_CRANK: setDodgeNeonNGCEngineConfiguration(); break; case FORD_ASPIRE_1996: setFordAspireEngineConfiguration(); break; case NISSAN_PRIMERA: setNissanPrimeraEngineConfiguration(); break; case FRANKENSO_MIATA_NA6_MAP: setMiataNA6_MAP_Frankenso(); break; case FRANKENSO_MIATA_NA6_VAF: setMiataNA6_VAF_Frankenso(); break; case ETB_BENCH_ENGINE: setEtbTestConfiguration(); break; case L9779_BENCH_ENGINE: setL9779TestConfiguration(); break; case EEPROM_BENCH_ENGINE: #if EFI_PROD_CODE setEepromTestConfiguration(); #endif break; case TLE8888_BENCH_ENGINE: setTle8888TestConfiguration(); break; case FRANKENSO_MAZDA_MIATA_NA8: setFrankensoMazdaMiataNA8Configuration(); break; case MITSU_4G93: setMitsubishiConfiguration(); break; case FORD_INLINE_6_1995: setFordInline6(); break; case GY6_139QMB: setGy6139qmbDefaultEngineConfiguration(); break; case HONDA_600: setHonda600(); break; case FORD_ESCORT_GT: setFordEscortGt(); break; case MIATA_1996: setFrankensteinMiata1996(); break; case CITROEN_TU3JP: setCitroenBerlingoTU3JPConfiguration(); break; case SUBARU_2003_WRX: setSubaru2003Wrx(); break; case DODGE_RAM: setDodgeRam1996(); break; case VW_ABA: setVwAba(); break; case FRANKENSO_MAZDA_MIATA_2003: setMazdaMiata2003EngineConfiguration(); break; case MAZDA_MIATA_2003_NA_RAIL: setMazdaMiata2003EngineConfigurationNaFuelRail(); break; case MAZDA_MIATA_2003_BOARD_TEST: setMazdaMiata2003EngineConfigurationBoardTest(); break; case TEST_ENGINE_VVT: setTestVVTEngineConfiguration(); break; case SACHS: setSachs(); break; case CAMARO_4: setCamaro4(); break; case TOYOTA_2JZ_GTE_VVTi: setToyota_2jz_vics(); break; case TEST_33816: setTest33816EngineConfiguration(); break; case TEST_100: case TEST_101: case TEST_102: case TEST_ROTARY: setRotary(); break; #endif // HW_FRANKENSO #ifdef HW_SUBARU_EG33 case SUBARUEG33_DEFAULTS: setSubaruEG33Defaults(); break; #endif //HW_SUBARU_EG33 default: firmwareError(CUSTOM_UNEXPECTED_ENGINE_TYPE, "Unexpected engine type: %d", engineType); } applyNonPersistentConfiguration(); } void emptyCallbackWithConfiguration(engine_configuration_s * engineConfiguration) { UNUSED(engineConfiguration); } void resetConfigurationExt(engine_type_e engineType) { resetConfigurationExt(&emptyCallbackWithConfiguration, engineType); } void validateConfiguration() { if (engineConfiguration->adcVcc > 5.0f || engineConfiguration->adcVcc < 1.0f) { engineConfiguration->adcVcc = 3.0f; } engine->preCalculate(); } void applyNonPersistentConfiguration() { #if EFI_PROD_CODE efiAssertVoid(CUSTOM_APPLY_STACK, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "apply c"); efiPrintf("applyNonPersistentConfiguration()"); #endif #if EFI_ENGINE_CONTROL engine->updateTriggerWaveform(); #endif // EFI_ENGINE_CONTROL } void setTwoStrokeOperationMode() { engineConfiguration->twoStroke = true; } void setCamOperationMode() { engineConfiguration->skippedWheelOnCam = true; } void setCrankOperationMode() { engineConfiguration->skippedWheelOnCam = false; } void commonFrankensoAnalogInputs(engine_configuration_s *engineConfiguration) { /** * VBatt */ engineConfiguration->vbattAdcChannel = EFI_ADC_14; } void setFrankenso0_1_joystick(engine_configuration_s *engineConfiguration) { engineConfiguration->joystickCenterPin = Gpio::C8; engineConfiguration->joystickAPin = Gpio::D10; engineConfiguration->joystickBPin = Gpio::Unassigned; engineConfiguration->joystickCPin = Gpio::Unassigned; engineConfiguration->joystickDPin = Gpio::D11; } // These symbols are weak so that a board_configuration.cpp file can override them __attribute__((weak)) void setBoardDefaultConfiguration() { } __attribute__((weak)) void setBoardConfigOverrides() { } __attribute__((weak)) int getBoardMetaOutputsCount() { return 0; } __attribute__((weak)) Gpio* getBoardMetaOutputs() { return nullptr; }