/** * @file accel_enrichment.cpp * @brief Acceleration enrichment calculator * * In this file we have three strategies for acceleration/deceleration fuel correction * * 1) MAP rate-of-change correction * 2) TPS rate-of-change correction * 3) fuel film/wal wetting correction * AWC Added to Wall Coefficient, % * AWA Added to Wall Amount * SOC Sucked Off wall Coefficient, % * SOA Sucked Off wall amount * WF current on-Wall Fuel amount * * * http://rusefi.com/wiki/index.php?title=Manual:Software:Fuel_Control * @date Apr 21, 2014 * @author Dmitry Sidin * @author Andrey Belomutskiy, (c) 2012-2018 */ #include "main.h" #include "trigger_central.h" #include "accel_enrichment.h" #include "engine_state.h" #include "engine_math.h" #include "signal_executor.h" #if !EFI_UNIT_TEST || defined(__DOXYGEN__) #include "tunerstudio_configuration.h" extern TunerStudioOutputChannels tsOutputChannels; #endif /* EFI_UNIT_TEST */ EXTERN_ENGINE ; tps_tps_Map3D_t tpsTpsMap("tpsTps"); static Logging *logger = NULL; WallFuel::WallFuel() { reset(); } void WallFuel::reset() { memset(wallFuel, 0, sizeof(wallFuel)); } floatms_t WallFuel::adjust(int injectorIndex, floatms_t target DECLARE_ENGINE_PARAMETER_SUFFIX) { if (cisnan(target)) { return target; } // disable this correction for cranking if (ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE)) { return target; } float addedToWallCoef = CONFIG(addedToWallCoef); /** * What amount of fuel is sucked of the walls, based on current amount of fuel on the wall. */ floatms_t suckedOffWallsAmount = wallFuel[injectorIndex] * CONFIG(suckedOffCoef); floatms_t adjustedFuelPulse = (target - suckedOffWallsAmount) / (1 - addedToWallCoef); // We can't inject a negative amount of fuel // If this goes below zero we will be over-fueling slightly, // but that's ok. if(adjustedFuelPulse < 0) { adjustedFuelPulse = 0; } float addedToWallsAmount = adjustedFuelPulse * addedToWallCoef; wallFuel[injectorIndex] += addedToWallsAmount - suckedOffWallsAmount; engine->wallFuelCorrection = adjustedFuelPulse - target; return adjustedFuelPulse; } floatms_t WallFuel::getWallFuel(int injectorIndex) { return wallFuel[injectorIndex]; } int AccelEnrichmemnt::getMaxDeltaIndex(DECLARE_ENGINE_PARAMETER_SIGNATURE) { int len = minI(cb.getSize(), cb.getCount()); if (len < 2) return 0; int ci = cb.currentIndex - 1; float maxValue = cb.get(ci) - cb.get(ci - 1); int resultIndex = ci; // todo: 'get' method is maybe a bit heavy because of the branching // todo: this could be optimized with some careful magic for (int i = 1; i maxValue) { maxValue = v; resultIndex = ci - i; } } return resultIndex; } float AccelEnrichmemnt::getMaxDelta(DECLARE_ENGINE_PARAMETER_SIGNATURE) { int index = getMaxDeltaIndex(PASS_ENGINE_PARAMETER_SIGNATURE); return (cb.get(index) - (cb.get(index - 1))) * CONFIG(specs.cylindersCount); } // todo: eliminate code duplication between these two methods! Some pointer magic would help. floatms_t AccelEnrichmemnt::getTpsEnrichment(DECLARE_ENGINE_PARAMETER_SIGNATURE) { int index = getMaxDeltaIndex(PASS_ENGINE_PARAMETER_SIGNATURE); // FuelSchedule *fs = engine->engineConfiguration2->injectionEvents; float tpsTo = cb.get(index); float tpsFrom = cb.get(index - 1); float d = tpsTo - tpsFrom; float valueFromTable = tpsTpsMap.getValue(tpsFrom, tpsTo); floatms_t extraFuel; if (d > engineConfiguration->tpsAccelEnrichmentThreshold) { extraFuel = valueFromTable; } else if (d < -engineConfiguration->tpsDecelEnleanmentThreshold) { extraFuel = d * engineConfiguration->tpsDecelEnleanmentMultiplier; } else { extraFuel = 0; } #if !EFI_UNIT_TEST || defined(__DOXYGEN__) if (engineConfiguration->debugMode == DBG_TPS_ACCEL) { tsOutputChannels.debugFloatField1 = tpsFrom; tsOutputChannels.debugFloatField2 = tpsTo; tsOutputChannels.debugFloatField3 = valueFromTable; tsOutputChannels.debugFloatField4 = extraFuel; } #endif return extraFuel; } float AccelEnrichmemnt::getEngineLoadEnrichment(DECLARE_ENGINE_PARAMETER_SIGNATURE) { int index = getMaxDeltaIndex(PASS_ENGINE_PARAMETER_SIGNATURE); float d = (cb.get(index) - (cb.get(index - 1))) * CONFIG(specs.cylindersCount); float result = 0; int distance = 0; float taper = 0; if (d > engineConfiguration->engineLoadAccelEnrichmentThreshold) { int distance = cb.currentIndex - index; if (distance <= 0) // checking if indexes are out of order due to circular buffer nature distance += minI(cb.getCount(), cb.getSize()); taper = interpolate2d("accel", distance, engineConfiguration->mapAccelTaperBins, engineConfiguration->mapAccelTaperMult, MAP_ACCEL_TAPER); result = taper * d * engineConfiguration->engineLoadAccelEnrichmentMultiplier; } else if (d < -engineConfiguration->engineLoadDecelEnleanmentThreshold) { result = d * engineConfiguration->engineLoadAccelEnrichmentMultiplier; } #if ! EFI_UNIT_TEST || defined(__DOXYGEN__) if (engineConfiguration->debugMode == DBG_EL_ACCEL) { tsOutputChannels.debugIntField1 = distance; tsOutputChannels.debugFloatField1 = result; tsOutputChannels.debugFloatField2 = taper; } #endif return result; } void AccelEnrichmemnt::reset() { cb.clear(); previousValue = NAN; } void AccelEnrichmemnt::setLength(int length) { cb.setSize(length); } void AccelEnrichmemnt::onNewValue(float currentValue DECLARE_ENGINE_PARAMETER_SUFFIX) { cb.add(currentValue); } void AccelEnrichmemnt::onEngineCycleTps(DECLARE_ENGINE_PARAMETER_SIGNATURE) { onNewValue(getTPS(PASS_ENGINE_PARAMETER_SIGNATURE) PASS_ENGINE_PARAMETER_SUFFIX); } void AccelEnrichmemnt::onEngineCycle(DECLARE_ENGINE_PARAMETER_SIGNATURE) { onNewValue(getEngineLoadT(PASS_ENGINE_PARAMETER_SIGNATURE) PASS_ENGINE_PARAMETER_SUFFIX); } AccelEnrichmemnt::AccelEnrichmemnt() { reset(); cb.setSize(4); } #if ! EFI_UNIT_TEST || defined(__DOXYGEN__) static void accelInfo() { if (logger == NULL) return; // scheduleMsg(logger, "EL accel length=%d", mapInstance.cb.getSize()); scheduleMsg(logger, "EL accel th=%.2f/mult=%.2f", engineConfiguration->engineLoadAccelEnrichmentThreshold, engineConfiguration->engineLoadAccelEnrichmentMultiplier); scheduleMsg(logger, "EL decel th=%.2f/mult=%.2f", engineConfiguration->engineLoadDecelEnleanmentThreshold, engineConfiguration->engineLoadDecelEnleanmentMultiplier); // scheduleMsg(logger, "TPS accel length=%d", tpsInstance.cb.getSize()); scheduleMsg(logger, "TPS accel th=%.2f/mult=%.2f", engineConfiguration->tpsAccelEnrichmentThreshold, -1); scheduleMsg(logger, "added to wall=%.2f/sucked=%.2f", engineConfiguration->addedToWallCoef, engineConfiguration->suckedOffCoef); } void setEngineLoadAccelThr(float value) { engineConfiguration->engineLoadAccelEnrichmentThreshold = value; accelInfo(); } void setEngineLoadAccelMult(float value) { engineConfiguration->engineLoadAccelEnrichmentMultiplier = value; accelInfo(); } void setTpsAccelThr(float value) { engineConfiguration->tpsAccelEnrichmentThreshold = value; accelInfo(); } void setTpsDecelThr(float value) { engineConfiguration->tpsDecelEnleanmentThreshold = value; accelInfo(); } void setTpsDecelMult(float value) { engineConfiguration->tpsDecelEnleanmentMultiplier = value; accelInfo(); } void setDecelThr(float value) { engineConfiguration->engineLoadDecelEnleanmentThreshold = value; accelInfo(); } void setDecelMult(float value) { engineConfiguration->engineLoadDecelEnleanmentMultiplier = value; accelInfo(); } void setTpsAccelLen(int length) { if (length < 1) { scheduleMsg(logger, "Length should be positive"); return; } engine->tpsAccelEnrichment.setLength(length); accelInfo(); } void setEngineLoadAccelLen(int length) { if (length < 1) { scheduleMsg(logger, "Length should be positive"); return; } engine->engineLoadAccelEnrichment.setLength(length); accelInfo(); } void updateAccelParameters() { setEngineLoadAccelLen(engineConfiguration->engineLoadAccelLength); setTpsAccelLen(engineConfiguration->tpsAccelLength); } #endif /* ! EFI_UNIT_TEST */ void initAccelEnrichment(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) { logger = sharedLogger; tpsTpsMap.init(config->tpsTpsAccelTable, config->tpsTpsAccelFromRpmBins, config->tpsTpsAccelToRpmBins); #if ! EFI_UNIT_TEST || defined(__DOXYGEN__) addConsoleAction("accelinfo", accelInfo); updateAccelParameters(); #endif /* ! EFI_UNIT_TEST */ }