/** * @file electronic_throttle.cpp * @brief Electronic Throttle driver * * @see test test_etb.cpp * * * Limited user documentation at https://github.com/rusefi/rusefi/wiki/HOWTO_electronic_throttle_body * * todo: make this more universal if/when we get other hardware options * * May 2020 two vehicles have driver 500 miles each * Sep 2019 two-wire TLE9201 official driving around the block! https://www.youtube.com/watch?v=1vCeICQnbzI * by the way 9201 does not like getting above 8khz - it starts to get warm * May 2019 two-wire TLE7209 now behaves same as three-wire VNH2SP30 "eBay red board" on BOSCH 0280750009 * Apr 2019 two-wire TLE7209 support added * Mar 2019 best results so far achieved with three-wire H-bridges like VNH2SP30 on BOSCH 0280750009 * Jan 2019 actually driven around the block but still need some work. * Jan 2017 status: * Electronic throttle body with it's spring is definitely not linear - both P and I factors of PID are required to get any results * PID implementation tested on a bench only * it is believed that more than just PID would be needed, as is this is probably * not usable on a real vehicle. Needs to be tested :) * * https://raw.githubusercontent.com/wiki/rusefi/rusefi_documentation/oem_docs/VAG/Bosch_0280750009_pinout.jpg * * ETB is controlled according to pedal position input (pedal position sensor is a potentiometer) * pedal 0% means pedal not pressed / idle * pedal 100% means pedal all the way down * (not TPS - not the one you can calibrate in TunerStudio) * * * See also pid.cpp * * Relevant console commands: * * ETB_BENCH_ENGINE * set engine_type 58 * * enable verbose_etb * disable verbose_etb * ethinfo * set mock_pedal_position X * * * set debug_mode 17 * for PID outputs * * set etb_p X * set etb_i X * set etb_d X * set etb_o X * * set_etb_duty X * * http://rusefi.com/forum/viewtopic.php?f=5&t=592 * * @date Dec 7, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "pch.h" #if EFI_ELECTRONIC_THROTTLE_BODY #include "electronic_throttle_impl.h" #include "dc_motor.h" #include "dc_motors.h" #include "pid_auto_tune.h" #if defined(HAS_OS_ACCESS) #error "Unexpected OS ACCESS HERE" #endif #ifndef ETB_MAX_COUNT #define ETB_MAX_COUNT 2 #endif /* ETB_MAX_COUNT */ static pedal2tps_t pedal2tpsMap; constexpr float etbPeriodSeconds = 1.0f / ETB_LOOP_FREQUENCY; static bool startupPositionError = false; #define STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD 5 static const float hardCodedetbHitachiBiasBins[8] = {0.0, 19.0, 21.0, 22.0, 23.0, 25.0, 30.0, 100.0}; static const float hardCodedetbHitachiBiasValues[8] = {-18.0, -17.0, -15.0, 0.0, 16.0, 20.0, 20.0, 20.0}; /* Generated by TS2C on Thu Aug 20 21:10:02 EDT 2020*/ void setHitachiEtbBiasBins() { copyArray(config->etbBiasBins, hardCodedetbHitachiBiasBins); copyArray(config->etbBiasValues, hardCodedetbHitachiBiasValues); } static SensorType functionToPositionSensor(etb_function_e func) { switch(func) { case ETB_Throttle1: return SensorType::Tps1; case ETB_Throttle2: return SensorType::Tps2; case ETB_IdleValve: return SensorType::IdlePosition; case ETB_Wastegate: return SensorType::WastegatePosition; default: return SensorType::Invalid; } } static SensorType functionToTpsSensorPrimary(etb_function_e func) { switch(func) { case ETB_Throttle1: return SensorType::Tps1Primary; default: return SensorType::Tps2Primary; } } static SensorType functionToTpsSensorSecondary(etb_function_e func) { switch(func) { case ETB_Throttle1: return SensorType::Tps1Secondary; default: return SensorType::Tps2Secondary; } } #if EFI_TUNER_STUDIO static TsCalMode functionToCalModePriMin(etb_function_e func) { switch (func) { case ETB_Throttle1: return TsCalMode::Tps1Min; default: return TsCalMode::Tps2Min; } } static TsCalMode functionToCalModePriMax(etb_function_e func) { switch (func) { case ETB_Throttle1: return TsCalMode::Tps1Max; default: return TsCalMode::Tps2Max; } } static TsCalMode functionToCalModeSecMin(etb_function_e func) { switch (func) { case ETB_Throttle1: return TsCalMode::Tps1SecondaryMin; default: return TsCalMode::Tps2SecondaryMin; } } static TsCalMode functionToCalModeSecMax(etb_function_e func) { switch (func) { case ETB_Throttle1: return TsCalMode::Tps1SecondaryMax; default: return TsCalMode::Tps2SecondaryMax; } } #endif // EFI_TUNER_STUDIO static percent_t directPwmValue = NAN; static percent_t currentEtbDuty; #define ETB_DUTY_LIMIT 0.9 // this macro clamps both positive and negative percentages from about -100% to 100% #define ETB_PERCENT_TO_DUTY(x) (clampF(-ETB_DUTY_LIMIT, 0.01f * (x), ETB_DUTY_LIMIT)) bool EtbController::init(etb_function_e function, DcMotor *motor, pid_s *pidParameters, const ValueProvider3D* pedalMap, bool initializeThrottles) { if (function == ETB_None) { // if not configured, don't init. return false; } m_function = function; m_positionSensor = functionToPositionSensor(function); // If we are a throttle, require redundant TPS sensor if (function == ETB_Throttle1 || function == ETB_Throttle2) { // We don't need to init throttles, so nothing to do here. if (!initializeThrottles) { return false; } // If no sensor is configured for this throttle, skip initialization. if (!Sensor::hasSensor(functionToTpsSensorPrimary(function))) { return false; } if (!Sensor::isRedundant(m_positionSensor)) { firmwareError( OBD_Throttle_Position_Sensor_Circuit_Malfunction, "Use of electronic throttle requires %s to be redundant.", Sensor::getSensorName(m_positionSensor) ); return false; } if (!Sensor::isRedundant(SensorType::AcceleratorPedal)) { firmwareError( OBD_Throttle_Position_Sensor_Circuit_Malfunction, "Use of electronic throttle requires accelerator pedal to be redundant." ); return false; } } m_motor = motor; m_pid.initPidClass(pidParameters); m_pedalMap = pedalMap; // Ignore 3% position error before complaining m_errorAccumulator.init(3.0f, etbPeriodSeconds); reset(); return true; } void EtbController::reset() { m_shouldResetPid = true; } void EtbController::onConfigurationChange(pid_s* previousConfiguration) { if (m_motor && !m_pid.isSame(previousConfiguration)) { m_shouldResetPid = true; } } void EtbController::showStatus() { m_pid.showPidStatus("ETB"); } expected EtbController::observePlant() const { return Sensor::get(m_positionSensor); } void EtbController::setIdlePosition(percent_t pos) { m_idlePosition = pos; } void EtbController::setWastegatePosition(percent_t pos) { m_wastegatePosition = pos; } expected EtbController::getSetpoint() { switch (m_function) { case ETB_Throttle1: case ETB_Throttle2: return getSetpointEtb(); case ETB_IdleValve: return getSetpointIdleValve(); case ETB_Wastegate: return getSetpointWastegate(); default: return unexpected; } } expected EtbController::getSetpointIdleValve() const { // VW ETB idle mode uses an ETB only for idle (a mini-ETB sets the lower stop, and a normal cable // can pull the throttle up off the stop.), so we directly control the throttle with the idle position. #if EFI_TUNER_STUDIO && (EFI_PROD_CODE || EFI_SIMULATOR) engine->outputChannels.etbTarget = m_idlePosition; #endif // EFI_TUNER_STUDIO return clampF(0, m_idlePosition, 100); } expected EtbController::getSetpointWastegate() const { return clampF(0, m_wastegatePosition, 100); } expected EtbController::getSetpointEtb() { // Autotune runs with 50% target position if (m_isAutotune) { return 50.0f; } // A few extra preconditions if throttle control is invalid if (startupPositionError) { return unexpected; } // If the pedal map hasn't been set, we can't provide a setpoint. if (!m_pedalMap) { return unexpected; } auto pedalPosition = Sensor::get(SensorType::AcceleratorPedal); // If the pedal has failed, just use 0 position. // This is safer than disabling throttle control - we can at least push the throttle closed // and let the engine idle. float sanitizedPedal = clampF(0, pedalPosition.value_or(0), 100); float rpm = Sensor::getOrZero(SensorType::Rpm); float targetFromTable = m_pedalMap->getValue(rpm, sanitizedPedal); engine->engineState.targetFromTable = targetFromTable; percent_t etbIdlePosition = clampF( 0, engineConfiguration->useETBforIdleControl ? m_idlePosition : 0, 100 ); percent_t etbIdleAddition = PERCENT_DIV * engineConfiguration->etbIdleThrottleRange * etbIdlePosition; // Interpolate so that the idle adder just "compresses" the throttle's range upward. // [0, 100] -> [idle, 100] // 0% target from table -> idle position as target // 100% target from table -> 100% target position idlePosition = interpolateClamped(0, etbIdleAddition, 100, 100, targetFromTable); percent_t targetPosition = idlePosition + luaAdjustment; // Apply any adjustment that this throttle alone needs // Clamped to +-10 to prevent anything too wild trim = clampF(-10, getThrottleTrim(rpm, targetPosition), 10); targetPosition += trim; // Lastly, apply ETB rev limiter auto etbRpmLimit = engineConfiguration->etbRevLimitStart; if (etbRpmLimit != 0) { auto fullyLimitedRpm = etbRpmLimit + engineConfiguration->etbRevLimitRange; // Linearly taper throttle to closed from the limit across the range targetPosition = interpolateClamped(etbRpmLimit, targetPosition, fullyLimitedRpm, 0, rpm); } float minPosition = engineConfiguration->etbMinimumPosition; if (minPosition < 0.01) { // compatibility with legacy tunes, todo: remove in Nov of 2022 minPosition = 1; } // Keep the throttle just barely off the lower stop, and less than the user-configured maximum float maxPosition = engineConfiguration->etbMaximumPosition; if (maxPosition < 70) { // compatibility with legacy tunes, todo: remove in Aug of 2022 maxPosition = 100; } else { // Don't allow max position over 100 maxPosition = minF(maxPosition, 100); } targetPosition = clampF(minPosition, targetPosition, maxPosition); #if EFI_TUNER_STUDIO if (m_function == ETB_Throttle1) { engine->outputChannels.etbTarget = targetPosition; } #endif // EFI_TUNER_STUDIO return targetPosition; } percent_t EtbController2::getThrottleTrim(float /*rpm*/, percent_t /*targetPosition*/) const { // TODO: implement me #3680 return 0; } expected EtbController::getOpenLoop(percent_t target) { float ff = 0; // Don't apply open loop for wastegate/idle valve, only real ETB if (m_function != ETB_Wastegate && m_function != ETB_IdleValve) { ff = interpolate2d(target, config->etbBiasBins, config->etbBiasValues); } engine->engineState.etbFeedForward = ff; return ff; } expected EtbController::getClosedLoopAutotune(percent_t target, percent_t actualThrottlePosition) { // Estimate gain at current position - this should be well away from the spring and in the linear region // GetSetpoint sets this to 50% bool isPositive = actualThrottlePosition > target; float autotuneAmplitude = 20; // End of cycle - record & reset if (!isPositive && m_lastIsPositive) { efitick_t now = getTimeNowNt(); // Determine period float tu = NT2US((float)(now - m_cycleStartTime)) / 1e6; m_cycleStartTime = now; // Determine amplitude float a = m_maxCycleTps - m_minCycleTps; // Filter - it's pretty noisy since the ultimate period is not very many loop periods constexpr float alpha = 0.05; m_a = alpha * a + (1 - alpha) * m_a; m_tu = alpha * tu + (1 - alpha) * m_tu; // Reset bounds m_minCycleTps = 100; m_maxCycleTps = 0; // Math is for Åström–Hägglund (relay) auto tuning // https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume5issue2/hornsey // Publish to TS state #if EFI_TUNER_STUDIO // Amplitude of input (duty cycle %) float b = 2 * autotuneAmplitude; // Ultimate gain per A-H relay tuning rule float ku = 4 * b / (CONST_PI * m_a); // The multipliers below are somewhere near the "no overshoot" // and "some overshoot" flavors of the Ziegler-Nichols method // Kp float kp = 0.35f * ku; float ki = 0.25f * ku / m_tu; float kd = 0.08f * ku * m_tu; // Every 5 cycles (of the throttle), cycle to the next value if (m_autotuneCounter == 5) { m_autotuneCounter = 0; m_autotuneCurrentParam++; if (m_autotuneCurrentParam >= 3) { m_autotuneCurrentParam = 0; } } m_autotuneCounter++; // Multiplex 3 signals on to the {mode, value} format engine->outputChannels.calibrationMode = (uint8_t)static_cast(m_autotuneCurrentParam + 3); switch (m_autotuneCurrentParam) { case 0: engine->outputChannels.calibrationValue = kp; break; case 1: engine->outputChannels.calibrationValue = ki; break; case 2: engine->outputChannels.calibrationValue = kd; break; } // Also output to debug channels if configured if (engineConfiguration->debugMode == DBG_ETB_AUTOTUNE) { // a - amplitude of output (TPS %) engine->outputChannels.debugFloatField1 = m_a; // b - amplitude of input (Duty cycle %) engine->outputChannels.debugFloatField2 = b; // Tu - oscillation period (seconds) engine->outputChannels.debugFloatField3 = m_tu; engine->outputChannels.debugFloatField4 = ku; engine->outputChannels.debugFloatField5 = kp; engine->outputChannels.debugFloatField6 = ki; engine->outputChannels.debugFloatField7 = kd; } #endif } m_lastIsPositive = isPositive; // Find the min/max of each cycle if (actualThrottlePosition < m_minCycleTps) { m_minCycleTps = actualThrottlePosition; } if (actualThrottlePosition > m_maxCycleTps) { m_maxCycleTps = actualThrottlePosition; } // Bang-bang control the output to induce oscillation return autotuneAmplitude * (isPositive ? -1 : 1); } expected EtbController::getClosedLoop(percent_t target, percent_t observation) { if (m_shouldResetPid) { m_pid.reset(); m_shouldResetPid = false; } // Only report the 0th throttle if (m_function == ETB_Throttle1) { #if EFI_TUNER_STUDIO // Error is positive if the throttle needs to open further engine->outputChannels.etb1Error = target - observation; #endif /* EFI_TUNER_STUDIO */ } // Only allow autotune with stopped engine, and on the first throttle if (m_isAutotune) { return getClosedLoopAutotune(target, observation); } else { // Check that we're not over the error limit float errorIntegral = m_errorAccumulator.accumulate(target - observation); #if EFI_TUNER_STUDIO if (m_function == ETB_Throttle1) { engine->outputChannels.etbIntegralError = errorIntegral; } #endif // EFI_TUNER_STUDIO // Allow up to 10 percent-seconds of error if (errorIntegral > 10.0f) { // TODO: figure out how to handle uncalibrated ETB //engine->limpManager.etbProblem(); } // Normal case - use PID to compute closed loop part return m_pid.getOutput(target, observation, etbPeriodSeconds); } } void EtbController::setOutput(expected outputValue) { #if EFI_TUNER_STUDIO // Only report first-throttle stats if (m_function == ETB_Throttle1) { engine->outputChannels.etb1DutyCycle = outputValue.value_or(0); } #endif if (!m_motor) return; // If ETB is allowed, output is valid, and we aren't paused, output to motor. if (engine->limpManager.allowElectronicThrottle() && outputValue && !engineConfiguration->pauseEtbControl) { m_motor->enable(); m_motor->set(ETB_PERCENT_TO_DUTY(outputValue.Value)); } else { // Otherwise disable the motor. m_motor->disable(); } } void EtbController::update() { // If we didn't get initialized, fail fast if (!m_motor) { return; } #if EFI_TUNER_STUDIO // Only debug throttle #1 if (m_function == ETB_Throttle1) { m_pid.postState(engine->outputChannels.etbStatus); engine->outputChannels.etbStatus.output = directPwmValue; } #endif /* EFI_TUNER_STUDIO */ if (!cisnan(directPwmValue)) { m_motor->set(directPwmValue); return; } if (engineConfiguration->disableEtbWhenEngineStopped) { if (!engine->triggerCentral.engineMovedRecently()) { // If engine is stopped and so configured, skip the ETB update entirely // This is quieter and pulls less power than leaving it on all the time m_motor->disable(); return; } } engine->outputChannels.etbCurrentTarget = engine->engineState.targetFromTable; m_pid.iTermMin = engineConfiguration->etb_iTermMin; m_pid.iTermMax = engineConfiguration->etb_iTermMax; // Update local state about autotune m_isAutotune = Sensor::getOrZero(SensorType::Rpm) == 0 && engine->etbAutoTune && m_function == ETB_Throttle1; ClosedLoopController::update(); } void EtbController::autoCalibrateTps() { // Only auto calibrate throttles if (m_function == ETB_Throttle1 || m_function == ETB_Throttle2) { m_isAutocal = true; } } #if !EFI_UNIT_TEST /** * Things running on a timer (instead of a thread) don't participate it the RTOS's thread priority system, * and operate essentially "first come first serve", which risks starvation. * Since ETB is a safety critical device, we need the hard RTOS guarantee that it will be scheduled over other less important tasks. */ #include "periodic_thread_controller.h" template struct EtbImpl final : public TBase { void update() override { #if EFI_TUNER_STUDIO if (TBase::m_isAutocal) { // Don't allow if engine is running! if (Sensor::getOrZero(SensorType::Rpm) > 0) { TBase::m_isAutocal = false; return; } auto motor = TBase::getMotor(); if (!motor) { TBase::m_isAutocal = false; return; } auto myFunction = TBase::getFunction(); // First grab open motor->set(0.5f); motor->enable(); chThdSleepMilliseconds(1000); float primaryMax = Sensor::getRaw(functionToTpsSensorPrimary(myFunction)); float secondaryMax = Sensor::getRaw(functionToTpsSensorSecondary(myFunction)); // Let it return motor->set(0); chThdSleepMilliseconds(200); // Now grab closed motor->set(-0.5f); chThdSleepMilliseconds(1000); float primaryMin = Sensor::getRaw(functionToTpsSensorPrimary(myFunction)); float secondaryMin = Sensor::getRaw(functionToTpsSensorSecondary(myFunction)); // Finally disable and reset state motor->disable(); // Check that the calibrate actually moved the throttle if (absF(primaryMax - primaryMin) < 0.5f) { firmwareError(OBD_Throttle_Position_Sensor_Circuit_Malfunction, "Auto calibrate failed, check your wiring!\r\nClosed voltage: %.1fv Open voltage: %.1fv", primaryMin, primaryMax); TBase::m_isAutocal = false; return; } // Write out the learned values to TS, waiting briefly after setting each to let TS grab it engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMax(myFunction); engine->outputChannels.calibrationValue = primaryMax * TPS_TS_CONVERSION; chThdSleepMilliseconds(500); engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMin(myFunction); engine->outputChannels.calibrationValue = primaryMin * TPS_TS_CONVERSION; chThdSleepMilliseconds(500); engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMax(myFunction); engine->outputChannels.calibrationValue = secondaryMax * TPS_TS_CONVERSION; chThdSleepMilliseconds(500); engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMin(myFunction); engine->outputChannels.calibrationValue = secondaryMin * TPS_TS_CONVERSION; chThdSleepMilliseconds(500); engine->outputChannels.calibrationMode = (uint8_t)TsCalMode::None; TBase::m_isAutocal = false; return; } #endif /* EFI_TUNER_STUDIO */ TBase::update(); } }; // real implementation (we mock for some unit tests) static EtbImpl etb1; static EtbImpl etb2; static_assert(ETB_COUNT == 2); EtbController* etbControllers[] = { &etb1, &etb2 }; struct EtbThread final : public PeriodicController<512> { EtbThread() : PeriodicController("ETB", PRIO_ETB, ETB_LOOP_FREQUENCY) {} void PeriodicTask(efitick_t) override { // Simply update all controllers for (int i = 0 ; i < ETB_COUNT; i++) { etbControllers[i]->update(); } } }; static EtbThread etbThread CCM_OPTIONAL; #endif static void showEthInfo() { #if EFI_PROD_CODE efiPrintf("etbAutoTune=%d", engine->etbAutoTune); efiPrintf("TPS=%.2f", Sensor::getOrZero(SensorType::Tps1)); efiPrintf("etbControlPin=%s duty=%.2f freq=%d", hwPortname(engineConfiguration->etbIo[0].controlPin), currentEtbDuty, engineConfiguration->etbFreq); for (int i = 0; i < ETB_COUNT; i++) { efiPrintf("ETB%d", i); efiPrintf(" dir1=%s", hwPortname(engineConfiguration->etbIo[i].directionPin1)); efiPrintf(" dir2=%s", hwPortname(engineConfiguration->etbIo[i].directionPin2)); efiPrintf(" control=%s", hwPortname(engineConfiguration->etbIo[i].controlPin)); efiPrintf(" disable=%s", hwPortname(engineConfiguration->etbIo[i].disablePin)); showDcMotorInfo(i); } #endif /* EFI_PROD_CODE */ } static void etbPidReset() { for (int i = 0 ; i < ETB_COUNT; i++) { if (auto controller = engine->etbControllers[i]) { controller->reset(); } } } #if !EFI_UNIT_TEST /** * At the moment there are TWO ways to use this * set_etb_duty X * set etb X * manual duty cycle control without PID. Percent value from 0 to 100 */ void setThrottleDutyCycle(percent_t level) { efiPrintf("setting ETB duty=%f%%", level); if (cisnan(level)) { directPwmValue = NAN; return; } float dc = ETB_PERCENT_TO_DUTY(level); directPwmValue = dc; for (int i = 0 ; i < ETB_COUNT; i++) { setDcMotorDuty(i, dc); } efiPrintf("duty ETB duty=%f", dc); } static void setEtbFrequency(int frequency) { engineConfiguration->etbFreq = frequency; for (int i = 0 ; i < ETB_COUNT; i++) { setDcMotorFrequency(i, frequency); } } static void etbReset() { efiPrintf("etbReset"); for (int i = 0 ; i < ETB_COUNT; i++) { setDcMotorDuty(i, 0); } etbPidReset(); } #endif /* EFI_PROD_CODE */ #if !EFI_UNIT_TEST /** * set etb_p X */ void setEtbPFactor(float value) { engineConfiguration->etb.pFactor = value; etbPidReset(); showEthInfo(); } /** * set etb_i X */ void setEtbIFactor(float value) { engineConfiguration->etb.iFactor = value; etbPidReset(); showEthInfo(); } /** * set etb_d X */ void setEtbDFactor(float value) { engineConfiguration->etb.dFactor = value; etbPidReset(); showEthInfo(); } /** * set etb_o X */ void setEtbOffset(int value) { engineConfiguration->etb.offset = value; etbPidReset(); showEthInfo(); } void etbAutocal(size_t throttleIndex) { if (throttleIndex >= ETB_COUNT) { return; } if (auto etb = engine->etbControllers[throttleIndex]) { etb->autoCalibrateTps(); } } #endif /* !EFI_UNIT_TEST */ /** * This specific throttle has default position of about 7% open */ static const float boschBiasBins[] = { 0, 1, 5, 7, 14, 65, 66, 100 }; static const float boschBiasValues[] = { -15, -15, -10, 0, 19, 20, 26, 28 }; void setBoschVAGETB() { // set tps_min 890 engineConfiguration->tpsMin = 890; // convert 12to10 bit (ADC/4) // set tps_max 70 engineConfiguration->tpsMax = 70; // convert 12to10 bit (ADC/4) engineConfiguration->tps1SecondaryMin = 102; engineConfiguration->tps1SecondaryMax = 891; engineConfiguration->etb.pFactor = 5.12; engineConfiguration->etb.iFactor = 47; engineConfiguration->etb.dFactor = 0.088; engineConfiguration->etb.offset = 0; } void setBoschVNH2SP30Curve() { copyArray(config->etbBiasBins, boschBiasBins); copyArray(config->etbBiasValues, boschBiasValues); } void setDefaultEtbParameters() { engineConfiguration->etbIdleThrottleRange = 5; setLinearCurve(config->pedalToTpsPedalBins, /*from*/0, /*to*/100, 1); setLinearCurve(config->pedalToTpsRpmBins, /*from*/0, /*to*/8000, 1); for (int pedalIndex = 0;pedalIndexpedalToTpsTable[pedalIndex][rpmIndex] = config->pedalToTpsPedalBins[pedalIndex]; } } // Default is to run each throttle off its respective hbridge engineConfiguration->etbFunctions[0] = ETB_Throttle1; engineConfiguration->etbFunctions[1] = ETB_Throttle2; engineConfiguration->etbFreq = DEFAULT_ETB_PWM_FREQUENCY; // voltage, not ADC like with TPS engineConfiguration->throttlePedalUpVoltage = 0; engineConfiguration->throttlePedalWOTVoltage = 5; engineConfiguration->throttlePedalSecondaryWOTVoltage = 5.0; engineConfiguration->etb = { 1, // Kp 10, // Ki 0.05, // Kd 0, // offset 0, // Update rate, unused -100, 100 // min/max }; engineConfiguration->etb_iTermMin = -30; engineConfiguration->etb_iTermMax = 30; } void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration) { #if !EFI_UNIT_TEST for (int i = 0; i < ETB_COUNT; i++) { etbControllers[i]->onConfigurationChange(&previousConfiguration->etb); } #endif } #if EFI_PROD_CODE && 0 static void setTempOutput(float value) { autoTune.output = value; } /** * set_etbat_step X */ static void setAutoStep(float value) { autoTune.reset(); autoTune.SetOutputStep(value); } #endif /* EFI_PROD_CODE */ static const float defaultBiasBins[] = { 0, 1, 2, 4, 7, 98, 99, 100 }; static const float defaultBiasValues[] = { -20, -18, -17, 0, 20, 21, 22, 25 }; void setDefaultEtbBiasCurve() { copyArray(config->etbBiasBins, defaultBiasBins); copyArray(config->etbBiasValues, defaultBiasValues); } void unregisterEtbPins() { // todo: we probably need an implementation here?! } static pid_s* getEtbPidForFunction(etb_function_e function) { switch (function) { case ETB_Wastegate: return &engineConfiguration->etbWastegatePid; default: return &engineConfiguration->etb; } } void doInitElectronicThrottle() { efiAssertVoid(OBD_PCM_Processor_Fault, engine->etbControllers != NULL, "etbControllers NULL"); #if EFI_PROD_CODE addConsoleAction("ethinfo", showEthInfo); addConsoleAction("etbreset", etbReset); addConsoleActionI("etb_freq", setEtbFrequency); // this command is useful for real hardware test with known cheap hardware addConsoleAction("etb_test_hw", [](){ set18919_AM810_pedal_position_sensor(); }); #endif /* EFI_PROD_CODE */ pedal2tpsMap.init(config->pedalToTpsTable, config->pedalToTpsPedalBins, config->pedalToTpsRpmBins); bool shouldInitThrottles = Sensor::hasSensor(SensorType::AcceleratorPedalPrimary); bool anyEtbConfigured = false; // todo: technical debt: we still have DC motor code initialization in ETB-specific file while DC motors are used not just as ETB // todo: rename etbFunctions to something-without-etb for same reason? for (int i = 0 ; i < ETB_COUNT; i++) { auto func = engineConfiguration->etbFunctions[i]; if (func == ETB_None) { // do not touch HW pins if function not selected, this way Lua can use DC motor hardware pins directly continue; } auto motor = initDcMotor(engineConfiguration->etbIo[i], i, engineConfiguration->etb_use_two_wires); // If this motor is actually set up, init the etb if (motor) { auto controller = engine->etbControllers[i]; if (!controller) { continue; } auto pid = getEtbPidForFunction(func); anyEtbConfigured |= controller->init(func, motor, pid, &pedal2tpsMap, shouldInitThrottles); } } if (!anyEtbConfigured) { // It's not valid to have a PPS without any ETBs - check that at least one ETB was enabled along with the pedal if (shouldInitThrottles) { firmwareError(OBD_PCM_Processor_Fault, "A pedal position sensor was configured, but no electronic throttles are configured."); } // Don't start the thread if no throttles are in use. return; } #if 0 && ! EFI_UNIT_TEST percent_t startupThrottlePosition = getTPS(); if (absF(startupThrottlePosition - engineConfiguration->etbNeutralPosition) > STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD) { /** * Unexpected electronic throttle start-up position is worth a critical error */ firmwareError(OBD_Throttle_Actuator_Control_Range_Performance_Bank_1, "startup ETB position %.2f not %d", startupThrottlePosition, engineConfiguration->etbNeutralPosition); startupPositionError = true; } #endif /* EFI_UNIT_TEST */ #if !EFI_UNIT_TEST etbThread.Start(); #endif } void initElectronicThrottle() { if (hasFirmwareError()) { return; } #if !EFI_UNIT_TEST for (int i = 0; i < ETB_COUNT; i++) { engine->etbControllers[i] = etbControllers[i]; } #endif doInitElectronicThrottle(); } void setEtbIdlePosition(percent_t pos) { if (!Sensor::hasSensor(SensorType::AcceleratorPedal)) { firmwareError(CUSTOM_NO_ETB_FOR_IDLE, "ETB idle does not work with unhappy accelerator pedal."); return; } for (int i = 0; i < ETB_COUNT; i++) { if (auto etb = engine->etbControllers[i]) { etb->setIdlePosition(pos); } } } void setEtbWastegatePosition(percent_t pos) { for (int i = 0; i < ETB_COUNT; i++) { if (auto etb = engine->etbControllers[i]) { etb->setWastegatePosition(pos); } } } void set18919_AM810_pedal_position_sensor() { engineConfiguration->throttlePedalUpVoltage = 0.1; engineConfiguration->throttlePedalWOTVoltage = 4.5; engineConfiguration->throttlePedalSecondaryUpVoltage = 0.1; engineConfiguration->throttlePedalSecondaryWOTVoltage = 2.2; } void setToyota89281_33010_pedal_position_sensor() { engineConfiguration->throttlePedalUpVoltage = 0; engineConfiguration->throttlePedalWOTVoltage = 4.1; engineConfiguration->throttlePedalSecondaryUpVoltage = 0.73; engineConfiguration->throttlePedalSecondaryWOTVoltage = 4.9; } void setHitachiEtbCalibration() { setToyota89281_33010_pedal_position_sensor(); setHitachiEtbBiasBins(); engineConfiguration->etb.pFactor = 2.7999; engineConfiguration->etb.iFactor = 25.5; engineConfiguration->etb.dFactor = 0.053; engineConfiguration->etb.offset = 0.0; engineConfiguration->etb.periodMs = 5.0; engineConfiguration->etb.minValue = -100.0; engineConfiguration->etb.maxValue = 100.0; // Nissan 60mm throttle engineConfiguration->tpsMin = engineConfiguration->tps2Min = 113; engineConfiguration->tpsMax = engineConfiguration->tps2Max = 846; engineConfiguration->tps1SecondaryMin = engineConfiguration->tps2SecondaryMin = 897; engineConfiguration->tps1SecondaryMax = engineConfiguration->tps2SecondaryMax = 161; } void setProteusHitachiEtbDefaults() { setHitachiEtbCalibration(); // EFI_ADC_12: "Analog Volt 3" engineConfiguration->tps1_2AdcChannel = PROTEUS_IN_TPS1_2; // EFI_ADC_13: "Analog Volt 4" engineConfiguration->tps2_1AdcChannel = PROTEUS_IN_TPS2_1; // EFI_ADC_0: "Analog Volt 5" engineConfiguration->tps2_2AdcChannel = EFI_ADC_0; // EFI_ADC_1: "Analog Volt 6" engineConfiguration->throttlePedalPositionAdcChannel = PROTEUS_IN_PPS; // EFI_ADC_2: "Analog Volt 7" engineConfiguration->throttlePedalPositionSecondAdcChannel = PROTEUS_IN_PPS2; } #endif /* EFI_ELECTRONIC_THROTTLE_BODY */