/** * @file rpm_calculator.c * @brief RPM calculator * * Here we listen to position sensor events in order to figure our if engine is currently running or not. * Actual getRpm() is calculated once per crankshaft revolution, based on the amount of time passed * since the start of previous shaft revolution. * * @date Jan 1, 2013 * @author Andrey Belomutskiy, (c) 2012-2014 */ #include "main.h" #include "rpm_calculator.h" #if EFI_WAVE_CHART #include "wave_chart.h" extern WaveChart waveChart; #endif /* EFI_WAVE_CHART */ #if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__) #include "trigger_central.h" #include "engine_configuration.h" #include "ec2.h" #include "engine_math.h" #if EFI_PROD_CODE #include "rfiutil.h" #include "engine.h" #endif #if EFI_ANALOG_CHART #include "analog_chart.h" #endif /* EFI_PROD_CODE */ #define UNREALISTIC_RPM 30000 #define TOP_DEAD_CENTER_MESSAGE "r" /** * @return -1 in case of isNoisySignal(), current RPM otherwise */ int getRpmE(Engine *engine) { efiAssert(engine->rpmCalculator!=NULL, "rpmCalculator not assigned", -1); return engine->rpmCalculator->rpm(); } extern engine_configuration_s *engineConfiguration; extern engine_configuration2_s *engineConfiguration2; #if EFI_PROD_CODE || EFI_SIMULATOR static Logging logger; extern Engine engine; #endif RpmCalculator::RpmCalculator() { rpmValue = 0; // we need this initial to have not_running at first invocation lastRpmEventTimeUs = (uint64_t) -10 * US_PER_SECOND; } /** * @return true if there was a full shaft revolution within the last second */ bool RpmCalculator::isRunning(void) { uint64_t nowUs = getTimeNowUs(); return nowUs - lastRpmEventTimeUs < US_PER_SECOND; } int RpmCalculator::rpm(void) { if (!this->isRunning()) return 0; return rpmValue; } bool isValidRpm(int rpm) { return rpm > 0 && rpm < UNREALISTIC_RPM; } #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) bool isCranking(void) { int rpm = getRpm(); return isCrankingR(rpm); } #endif /** * Checks for noise on the trigger input line. Noise is detected by an unexpectedly small time gap between * current and previous trigger input events. * * @return TRUE if noise is detected */ static int isNoisySignal(RpmCalculator * rpmState, uint64_t nowUs) { uint64_t diff = nowUs - rpmState->lastRpmEventTimeUs; /** * 60/2 wheel at 8000 rpm * 60000000us / 8000 / 120 = 62us */ return diff < 40; // that's 40us } /** * @brief Shaft position callback used by RPM calculation logic. * * This callback should always be the first of trigger callbacks because other callbacks depend of values * updated here. * This callback is invoked on interrupt thread. */ void rpmShaftPositionCallback(trigger_event_e ckpSignalType, int index, RpmCalculator *rpmState) { if (index != 0) { #if EFI_ANALOG_CHART || defined(__DOXYGEN__) if (engineConfiguration->analogChartMode == AC_TRIGGER) acAddData(getCrankshaftAngle(getTimeNowUs()), 1000 * ckpSignalType + index); #endif return; } rpmState->revolutionCounter++; uint64_t nowUs = getTimeNowUs(); bool hadRpmRecently = rpmState->isRunning(); if (hadRpmRecently) { if (isNoisySignal(rpmState, nowUs)) { // unexpected state. Noise? rpmState->rpmValue = NOISY_RPM; } else { uint64_t diff = nowUs - rpmState->lastRpmEventTimeUs; // 60000 because per minute // * 2 because each revolution of crankshaft consists of two camshaft revolutions // need to measure time from the previous non-skipped event /** * Four stroke cycle is two crankshaft revolutions */ int rpm = (int) (60 * US_PER_SECOND * 2 / diff); rpmState->rpmValue = rpm > UNREALISTIC_RPM ? NOISY_RPM : rpm; } } rpmState->lastRpmEventTimeUs = nowUs; #if EFI_ANALOG_CHART || defined(__DOXYGEN__) if (engineConfiguration->analogChartMode == AC_TRIGGER) acAddData(getCrankshaftAngle(nowUs), index); #endif } static scheduling_s tdcScheduler[2]; static char rpmBuffer[10]; #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) /** * This callback has nothing to do with actual engine control, it just sends a Top Dead Center mark to the dev console * digital sniffer. */ static void onTdcCallback(void) { itoa10(rpmBuffer, getRpm()); addWaveChartEvent(TOP_DEAD_CENTER_MESSAGE, (char*) rpmBuffer, ""); } /** * This trigger callback schedules the actual physical TDC callback in relation to trigger synchronization point. */ static void tdcMarkCallback(trigger_event_e ckpSignalType, int index0, void *arg) { bool isTriggerSynchronizationPoint = index0 == 0; if (isTriggerSynchronizationPoint) { int revIndex2 = getRevolutionCounter() % 2; // todo: use event-based scheduling, not just time-based scheduling scheduleByAngle(&tdcScheduler[revIndex2], engineConfiguration->globalTriggerAngleOffset, (schfunc_t) onTdcCallback, NULL); } } #endif static RpmCalculator rpmState; uint64_t getLastRpmEventTime(void) { return rpmState.lastRpmEventTimeUs; } int getRevolutionCounter(void) { return rpmState.revolutionCounter; } /** * @return Current crankshaft angle, 0 to 720 for four-stroke */ float getCrankshaftAngle(uint64_t timeUs) { uint64_t timeSinceZeroAngle = timeUs - rpmState.lastRpmEventTimeUs; float cRevolutionTimeMs = getCrankshaftRevolutionTimeMs(rpmState.rpm()); return 360.0 * timeSinceZeroAngle / cRevolutionTimeMs / 1000; } void initRpmCalculator(void) { #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) initLogging(&logger, "rpm calc"); engine.rpmCalculator = &rpmState; tdcScheduler[0].name = "tdc0"; tdcScheduler[1].name = "tdc1"; addTriggerEventListener(&tdcMarkCallback, "chart TDC mark", NULL); #endif addTriggerEventListener((ShaftPositionListener)&rpmShaftPositionCallback, "rpm reporter", &rpmState); } #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) /** * Schedules a callback 'angle' degree of crankshaft from now. * The callback would be executed once after the duration of time which * it takes the crankshaft to rotate to the specified angle. */ void scheduleByAngle(scheduling_s *timer, float angle, schfunc_t callback, void *param) { int rpm = getRpm(); if (!isValidRpm(rpm)) { // this might happen in case of a single trigger event after a pause warning(OBD_PCM_Processor_Fault, "Invalid rpm: %d", rpm); return; } float delayMs = getOneDegreeTimeMs(rpm) * angle; if (cisnan(delayMs)) { firmwareError("NaN delay?"); return; } scheduleTask("by angle", timer, (int)MS2US(delayMs), callback, param); } #endif #endif /* EFI_SHAFT_POSITION_INPUT */ void addWaveChartEvent(const char *name, const char * msg, const char *msg2) { #if EFI_WAVE_CHART waveChart.addWaveChartEvent3(name, msg, msg2); #endif /* EFI_WAVE_CHART */ }