/** * @file trigger_structure.cpp * * @date Jan 20, 2014 * @author Andrey Belomutskiy, (c) 2012-2014 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "main.h" #include "trigger_structure.h" #include "error_handling.h" #include "trigger_decoder.h" #include "engine_math.h" EXTERN_ENGINE; trigger_shape_helper::trigger_shape_helper() { for (int i = 0; i < TRIGGER_CHANNEL_COUNT; i++) { waves[i].init(pinStates[i]); } } trigger_shape_s::trigger_shape_s() : wave(switchTimesBuffer, NULL) { reset(OM_NONE); wave.waves = h.waves; useRiseEdge = false; gapBothDirections = false; isSynchronizationNeeded = false; invertOnAdd = false; } int trigger_shape_s::getSize() const { return size; } int trigger_shape_s::getTriggerShapeSynchPointIndex() { return triggerShapeSynchPointIndex; } void trigger_shape_s::calculateTriggerSynchPoint(engine_configuration_s *engineConfiguration, Engine *engine) { trigger_config_s const*triggerConfig = &engineConfiguration->triggerConfig; setTriggerShapeSynchPointIndex(engineConfiguration, findTriggerZeroEventIndex(this, triggerConfig), engine); } void trigger_shape_s::setTriggerShapeSynchPointIndex(engine_configuration_s *engineConfiguration, int triggerShapeSynchPointIndex, Engine *engine) { this->triggerShapeSynchPointIndex = triggerShapeSynchPointIndex; engine->engineCycleEventCount = getLength(); float firstAngle = getAngle(triggerShapeSynchPointIndex); for (int i = 0; i < engine->engineCycleEventCount; i++) { if (i == 0) { // explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature eventAngles[i] = 0; } else { float angle = getAngle((triggerShapeSynchPointIndex + i) % engine->engineCycleEventCount) - firstAngle; fixAngle(angle); eventAngles[i] = angle; } } } void trigger_shape_s::reset(operation_mode_e operationMode) { this->operationMode = operationMode; size = 0; triggerShapeSynchPointIndex = 0; memset(initialState, 0, sizeof(initialState)); memset(switchTimesBuffer, 0, sizeof(switchTimesBuffer)); memset(expectedEventCount, 0, sizeof(expectedEventCount)); wave.reset(); previousAngle = 0; } int multi_wave_s::getChannelState(int channelIndex, int phaseIndex) const { return waves[channelIndex].pinStates[phaseIndex]; } int multi_wave_s::waveIndertionAngle(float angle, int size) const { for (int i = size - 1; i >= 0; i--) { if (angle > switchTimes[i]) return i + 1; } return 0; } int multi_wave_s::findAngleMatch(float angle, int size) const { for (int i = 0; i < size; i++) { if (isSameF(switchTimes[i], angle)) return i; } return EFI_ERROR_CODE; } void multi_wave_s::setSwitchTime(int index, float value) { switchTimes[index] = value; } TriggerState::TriggerState() { cycleCallback = NULL; shaft_is_synchronized = false; toothed_previous_time = 0; toothed_previous_duration = 0; totalRevolutionCounter = 0; totalTriggerErrorCounter = 0; clear(); memset(expectedTotalTime, 0, sizeof(expectedTotalTime)); totalEventCountBase = 0; isFirstEvent = true; } int TriggerState::getCurrentIndex() { return current_index; } uint64_t TriggerState::getStartOfRevolutionIndex() { return totalEventCountBase; } uint64_t TriggerState::getTotalEventCounter() { return totalEventCountBase + current_index; } void TriggerState::nextRevolution(int triggerEventCount, uint64_t nowNt) { if (cycleCallback != NULL) { cycleCallback(this); } memcpy(prevTotalTime, totalTimeNt, sizeof(prevTotalTime)); prevCycleDuration = nowNt - startOfCycleNt; startOfCycleNt = nowNt; clear(); totalRevolutionCounter++; totalEventCountBase += triggerEventCount; } int TriggerState::getTotalRevolutionCounter() { return totalRevolutionCounter; } void TriggerState::nextTriggerEvent(trigger_wheel_e triggerWheel, uint64_t nowNt) { uint64_t prevTime = timeOfPreviousEventNt[triggerWheel]; if (prevTime != 0) { // even event - apply the value totalTimeNt[triggerWheel] += (nowNt - prevTime); timeOfPreviousEventNt[triggerWheel] = 0; } else { // odd event - start accumulation timeOfPreviousEventNt[triggerWheel] = nowNt; } current_index++; } void TriggerState::clear() { memset(eventCount, 0, sizeof(eventCount)); memset(eventCountExt, 0, sizeof(eventCountExt)); memset(timeOfPreviousEventNt, 0, sizeof(timeOfPreviousEventNt)); memset(totalTimeNt, 0, sizeof(totalTimeNt)); current_index = 0; } /** * Trigger event count equals engine cycle event count if we have a cam sensor. * Two trigger cycles make one engine cycle in case of a four stroke engine If we only have a cranksensor. */ uint32_t trigger_shape_s::getLength() const { return operationMode == FOUR_STROKE_CAM_SENSOR ? getSize() : 2 * getSize(); } float trigger_shape_s::getAngle(int index) const { if (operationMode == FOUR_STROKE_CAM_SENSOR) { return getSwitchAngle(index); } /** * FOUR_STROKE_CRANK_SENSOR magic: * We have two crank shaft revolutions for each engine cycle * See also trigger_central.cpp * See also getEngineCycleEventCount() */ int triggerEventCounter = size; if (index < triggerEventCounter) { return getSwitchAngle(index); } else { return 360 + getSwitchAngle(index - triggerEventCounter); } } void trigger_shape_s::addEvent(float angle, trigger_wheel_e const waveIndex, trigger_value_e const stateParam) { efiAssertVoid(operationMode != OM_NONE, "operationMode not set"); trigger_value_e state; if (invertOnAdd) { state = (stateParam == TV_LOW) ? TV_HIGH : TV_LOW; } else { state = stateParam; } /** * While '720' value works perfectly it has not much sense for crank sensor-only scenario. * todo: accept angle as a value in the 0..1 range? */ angle /= 720; expectedEventCount[waveIndex]++; efiAssertVoid(angle > 0, "angle should be positive"); if (size > 0) { if (angle <= previousAngle) { firmwareError("invalid angle order: %f and %f", angle, previousAngle); return; } } previousAngle = angle; if (size == 0) { size = 1; for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { single_wave_s *wave = &this->wave.waves[i]; if (wave == NULL) { firmwareError("wave is NULL"); return; } if (wave->pinStates == NULL) { firmwareError("wave pinStates is NULL"); return; } wave->pinStates[0] = initialState[i]; } wave.setSwitchTime(0, angle); wave.waves[waveIndex].pinStates[0] = state; return; } int exactMatch = wave.findAngleMatch(angle, size); if (exactMatch != EFI_ERROR_CODE) { firmwareError("same angle: not supported"); return; } int index = wave.waveIndertionAngle(angle, size); // shifting existing data for (int i = size - 1; i >= index; i--) { for (int j = 0; j < PWM_PHASE_MAX_WAVE_PER_PWM; j++) { wave.waves[j].pinStates[i + 1] = wave.getChannelState(j, index); } wave.setSwitchTime(i + 1, wave.getSwitchTime(i)); } // int index = size; size++; for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { wave.waves[i].pinStates[index] = wave.getChannelState(i, index - 1); } wave.setSwitchTime(index, angle); wave.waves[waveIndex].pinStates[index] = state; } int trigger_shape_s::getCycleDuration() const { return (operationMode == FOUR_STROKE_CAM_SENSOR) ? 720 : 360; } float trigger_shape_s::getSwitchAngle(int index) const { return getCycleDuration() * wave.getSwitchTime(index); } void multi_wave_s::checkSwitchTimes(int size) { checkSwitchTimes2(size, switchTimes); } void setToothedWheelConfiguration(trigger_shape_s *s, int total, int skipped, engine_configuration_s const *engineConfiguration) { s->isSynchronizationNeeded = (skipped != 0); s->totalToothCount = total; s->skippedToothCount = skipped; // todo: move to into configuration definition s->needSecondTriggerInput = false; s->useRiseEdge = true; initializeSkippedToothTriggerShapeExt(s, s->totalToothCount, s->skippedToothCount, getOperationMode(engineConfiguration)); } void setTriggerSynchronizationGap2(trigger_shape_s *s, float syncGapFrom, float syncRatioTo) { s->isSynchronizationNeeded = true; s->syncRatioFrom = syncGapFrom; s->syncRatioTo = syncRatioTo; } void setTriggerSynchronizationGap(trigger_shape_s *s, float synchGap) { setTriggerSynchronizationGap2(s, synchGap * 0.75f, synchGap * 1.25f); } #define S24 (720.0f / 24 / 2) static float addAccordPair(trigger_shape_s *s, float sb) { s->addEvent(sb, T_SECONDARY, TV_HIGH); sb += S24; s->addEvent(sb, T_SECONDARY, TV_LOW); sb += S24; return sb; } #define DIP 7.5f static float addAccordPair3(trigger_shape_s *s, float sb) { sb += DIP; s->addEvent(sb, T_CHANNEL_3, TV_HIGH); sb += DIP; s->addEvent(sb, T_CHANNEL_3, TV_LOW); sb += 2 * DIP; return sb; } /** * Thank you Dip! * http://forum.pgmfi.org/viewtopic.php?f=2&t=15570start=210#p139007 */ void configureHondaAccordCDDip(trigger_shape_s *s) { s->reset(FOUR_STROKE_CAM_SENSOR); s->initialState[T_SECONDARY] = TV_HIGH; float sb = 0; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(90, T_SECONDARY, TV_LOW); sb = 90; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(180, T_SECONDARY, TV_HIGH); sb = 180; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(270, T_SECONDARY, TV_LOW); sb = 270; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(360.0f - DIP, T_PRIMARY, TV_HIGH); s->addEvent(360, T_SECONDARY, TV_HIGH); sb = 360; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(450, T_SECONDARY, TV_LOW); sb = 450; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(540, T_SECONDARY, TV_HIGH); sb = 540; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(630, T_SECONDARY, TV_LOW); sb = 630; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(720.0f - DIP, T_PRIMARY, TV_LOW); // s->addEvent(720.0f - 12 * sb, T_SECONDARY, TV_LOW); // s->addEvent(720.0f, T_SECONDARY, TV_LOW); s->addEvent(720.0f, T_SECONDARY, TV_HIGH); s->isSynchronizationNeeded = false; } void configureHondaAccordCD(trigger_shape_s *s, bool with3rdSignal) { s->reset(FOUR_STROKE_CAM_SENSOR); float sb = 5.0f; float tdcWidth = 0.1854 * 720 / 4; s->isSynchronizationNeeded = false; sb = addAccordPair(s, sb); if (with3rdSignal) s->addEvent(sb - S24 / 2, T_CHANNEL_3, TV_HIGH); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); if (with3rdSignal) s->addEvent(sb - S24 / 2, T_CHANNEL_3, TV_LOW); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); s->addEvent(1 * 180.0f - tdcWidth, T_PRIMARY, TV_HIGH); sb = addAccordPair(s, sb); s->addEvent(1 * 180.0f, T_PRIMARY, TV_LOW); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); s->addEvent(2 * 180.0f - tdcWidth, T_PRIMARY, TV_HIGH); sb = addAccordPair(s, sb); s->addEvent(2 * 180.0f, T_PRIMARY, TV_LOW); for (int i = 3; i <= 4; i++) { sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); sb = addAccordPair(s, sb); s->addEvent(i * 180.0f - tdcWidth, T_PRIMARY, TV_HIGH); sb = addAccordPair(s, sb); s->addEvent(i * 180.0f, T_PRIMARY, TV_LOW); } }