/** * @file console_io.cpp * * @date Dec 29, 2012 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEFI can communicate with external universe via native USB or some sort of TTL mode * We have an interesting situation with TTL communication channels, we have * 1) SERIAL - this one was implemented first simply because the code was readily available (works on stm32) * this one is most suitable for streaming HAL API * this one is not great since each byte requires an IRQ and with enough IRQ delay we have a risk of data loss * 2) UART DMA - the best one since FIFO buffer reduces data loss (works on stm32) * We have two halves of DMA buffer - one is used for TTL while rusEFI prepares next batch of data in the other side. * We need idle support in order to not wait for the complete buffer to get full in order to recieve a message. * Back when we were implementing this STM32_DMA_CR_HTIE was not available in ChibiOS driver so we have added it. * we have custom rusEFI changes to ChibiOS HAL driver v1 * F7 uses driver v2 which currently does not have rusEFI changes. * open question if fresh ChibiOS is better in this regard. * 3) UART this one is useful on platforms with hardware FIFO buffer like Kinetis. * stm32 does not have such buffer so for stm32 UART without DMA has no advantages * * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "engine.h" #include "console_io.h" #include "os_util.h" #include "tunerstudio.h" #include "connector_uart_dma.h" #include "thread_priority.h" #if EFI_SIMULATOR #include "rusEfiFunctionalTest.h" #endif /*EFI_SIMULATOR */ EXTERN_ENGINE; // 10 seconds #define CONSOLE_WRITE_TIMEOUT 10000 static bool isSerialConsoleStarted = false; #if (defined(EFI_CONSOLE_SERIAL_DEVICE) && ! EFI_SIMULATOR) static event_listener_t consoleEventListener; #endif bool consoleByteArrived = false; void onDataArrived(void) { consoleByteArrived = true; } CommandHandler console_line_callback; #if (defined(EFI_CONSOLE_SERIAL_DEVICE) && ! EFI_SIMULATOR ) SerialConfig serialConfig = { .speed = 0, .cr1 = 0, .cr2 = USART_CR2_STOP1_BITS | USART_CR2_LINEN, .cr3 = 0 }; #endif #if (defined(EFI_CONSOLE_UART_DEVICE) && ! EFI_SIMULATOR ) /* Note: This structure is modified from the default ChibiOS layout! */ UARTConfig uartConfig = { .txend1_cb = NULL, .txend2_cb = NULL, .rxend_cb = NULL, .rxchar_cb = NULL, .rxerr_cb = NULL, .timeout_cb = NULL, .speed = 0, .cr1 = 0, .cr2 = 0/*USART_CR2_STOP1_BITS*/ | USART_CR2_LINEN, .cr3 = 0, .rxhalf_cb = NULL }; // To use UART driver instead of Serial, we need to imitate "BaseChannel" streaming functionality static msg_t _putt(void *, uint8_t b, sysinterval_t timeout) { int n = 1; uartSendTimeout(EFI_CONSOLE_UART_DEVICE, (size_t *)&n, &b, timeout); return MSG_OK; } static size_t _writet(void *, const uint8_t *bp, size_t n, sysinterval_t timeout) { uartSendTimeout(EFI_CONSOLE_UART_DEVICE, (size_t *)&n, bp, timeout); return n; } static msg_t _put(void *ip, uint8_t b) { #ifdef UART_USE_BLOCKING_SEND // this version can be called from the locked state (no interrupts) uart_lld_blocking_send(EFI_CONSOLE_UART_DEVICE, 1, (void *)&b); #else // uartSendTimeout() needs interrupts to wait for the end of transfer, so we have to unlock them temporary bool wasLocked = isLocked(); if (wasLocked) { if (isIsrContext()) { chSysUnlockFromISR() ; } else { chSysUnlock() ; } } _putt(ip, b, CONSOLE_WRITE_TIMEOUT); // Relock if we were locked before if (wasLocked) { if (isIsrContext()) { chSysLockFromISR(); } else { chSysLock(); } } #endif /* UART_USE_BLOCKING_WRITE */ return MSG_OK; } static size_t _write(void *ip, const uint8_t *bp, size_t n) { return _writet(ip, bp, n, CONSOLE_WRITE_TIMEOUT); } static msg_t _gett(void *, sysinterval_t /*timeout*/) { return 0; } static size_t _readt(void *, uint8_t */*bp*/, size_t /*n*/, sysinterval_t /*timeout*/) { return 0; } static msg_t _get(void *) { return 0; } static size_t _read(void *, uint8_t */*bp*/, size_t /*n*/) { return 0; } static msg_t _ctl(void *, unsigned int /*operation*/, void */*arg*/) { return MSG_OK; } // This is a "fake" channel for getConsoleChannel() filled with our handlers static const struct BaseChannelVMT uartChannelVmt = { .instance_offset = (size_t)0, .write = _write, .read = _read, .put = _put, .get = _get, .putt = _putt, .gett = _gett, .writet = _writet, .readt = _readt, .ctl = _ctl }; static const BaseChannel uartChannel = { .vmt = &uartChannelVmt }; #endif /* EFI_CONSOLE_UART_DEVICE */ ts_channel_s primaryChannel; #if EFI_PROD_CODE || EFI_EGT BaseChannel * getConsoleChannel(void) { #if PRIMARY_UART_DMA_MODE if (primaryChannel.uartp != nullptr) { // primary channel is in DMA mode - we do not have a stream implementation for this. return nullptr; } #endif #if defined(EFI_CONSOLE_SERIAL_DEVICE) return (BaseChannel *) EFI_CONSOLE_SERIAL_DEVICE; #endif /* EFI_CONSOLE_SERIAL_DEVICE */ #if defined(EFI_CONSOLE_UART_DEVICE) return (BaseChannel *) &uartChannel; #endif /* EFI_CONSOLE_UART_DEVICE */ return nullptr; } bool isCommandLineConsoleReady(void) { return isSerialConsoleStarted; } #endif /* EFI_PROD_CODE || EFI_EGT */ #if !defined(EFI_CONSOLE_NO_THREAD) static THD_WORKING_AREA(consoleThreadStack, CONNECTIVITY_THREAD_STACK); static THD_FUNCTION(consoleThreadEntryPoint, arg) { (void) arg; chRegSetThreadName("console thread"); #if !PRIMARY_UART_DMA_MODE primaryChannel.channel = (BaseChannel *) getConsoleChannel(); #endif #if EFI_TUNER_STUDIO runBinaryProtocolLoop(&primaryChannel); #endif /* EFI_TUNER_STUDIO */ } #endif /* EFI_CONSOLE_NO_THREAD */ static Logging *logger; void startConsole(Logging *sharedLogger, CommandHandler console_line_callback_p) { logger = sharedLogger; console_line_callback = console_line_callback_p; #if (defined(EFI_CONSOLE_SERIAL_DEVICE) || defined(EFI_CONSOLE_UART_DEVICE)) && ! EFI_SIMULATOR efiSetPadMode("console RX", EFI_CONSOLE_RX_BRAIN_PIN, PAL_MODE_ALTERNATE(EFI_CONSOLE_AF)); efiSetPadMode("console TX", EFI_CONSOLE_TX_BRAIN_PIN, PAL_MODE_ALTERNATE(EFI_CONSOLE_AF)); #endif #if PRIMARY_UART_DMA_MODE && ! EFI_SIMULATOR primaryChannel.uartp = EFI_CONSOLE_UART_DEVICE; startUartDmaConnector(primaryChannel.uartp PASS_CONFIG_PARAMETER_SUFFIX); isSerialConsoleStarted = true; #elif (defined(EFI_CONSOLE_SERIAL_DEVICE) && ! EFI_SIMULATOR) /* * Activates the serial * it is important to set 'NONE' as flow control! in terminal application on the PC */ serialConfig.speed = engineConfiguration->uartConsoleSerialSpeed; sdStart(EFI_CONSOLE_SERIAL_DEVICE, &serialConfig); chEvtRegisterMask((event_source_t *) chnGetEventSource(EFI_CONSOLE_SERIAL_DEVICE), &consoleEventListener, 1); isSerialConsoleStarted = true; #elif (defined(EFI_CONSOLE_UART_DEVICE) && ! EFI_SIMULATOR) uartConfig.speed = engineConfiguration->uartConsoleSerialSpeed; uartStart(EFI_CONSOLE_UART_DEVICE, &uartConfig); isSerialConsoleStarted = true; #endif /* EFI_CONSOLE_SERIAL_DEVICE || EFI_CONSOLE_UART_DEVICE */ #if !defined(EFI_CONSOLE_NO_THREAD) chThdCreateStatic(consoleThreadStack, sizeof(consoleThreadStack), PRIO_CONSOLE, (tfunc_t)consoleThreadEntryPoint, NULL); #endif /* EFI_CONSOLE_NO_THREAD */ }