/** * @file stm32_adc_v2.cpp * @brief Port implementation for the STM32 "v2" ADC found on the STM32F4 and STM32F7 * * @date February 9, 2021 * @author Matthew Kennedy, (c) 2021 */ #include "pch.h" #if HAL_USE_ADC /* Depth of the conversion buffer, channels are sampled X times each.*/ #define SLOW_ADC_OVERSAMPLE 8 #ifdef ADC_MUX_PIN static OutputPin muxControl; #endif // ADC_MUX_PIN void portInitAdc() { // Init slow ADC adcStart(&ADCD1, NULL); #ifdef ADC_MUX_PIN muxControl.initPin("ADC Mux", ADC_MUX_PIN); #endif //ADC_MUX_PIN #if EFI_USE_FAST_ADC // Init fast ADC (MAP sensor) adcStart(&ADCD2, NULL); #endif // Enable internal temperature reference adcSTM32EnableTSVREFE(); // Internal temperature sensor #if defined(STM32F7XX) /* the temperature sensor is internally * connected to the same input channel as VBAT. Only one conversion, * temperature sensor or VBAT, must be selected at a time. */ adcSTM32DisableVBATE(); #endif /* Enable this code only when you absolutly sure * that there is no possible errors from ADC */ #if 0 /* All ADC use DMA and DMA calls end_cb from its IRQ * If none of ADC users need error callback - we can disable * shared ADC IRQ and save some CPU ticks */ if ((adcgrpcfgSlow.error_cb == NULL) && (adcgrpcfgFast.error_cb == NULL) /* TODO: Add ADC3? */) { nvicDisableVector(STM32_ADC_NUMBER); } #endif } /* * ADC conversion group. */ static const ADCConversionGroup tempSensorConvGroup = { .circular = FALSE, .num_channels = 1, .end_cb = nullptr, .error_cb = nullptr, /* HW dependent part below */ .cr1 = 0, .cr2 = ADC_CR2_SWSTART, // sample times for channels 10...18 .smpr1 = ADC_SMPR1_SMP_VBAT(ADC_SAMPLE_144) | /* input18 - temperature and vbat input on some STM32F7xx */ ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_144), /* input16 - temperature sensor input on STM32F4xx */ .smpr2 = 0, .htr = 0, .ltr = 0, .sqr1 = 0, .sqr2 = 0, #if defined(STM32F4XX) .sqr3 = ADC_SQR3_SQ1_N(16), #endif #if defined(STM32F7XX) .sqr3 = ADC_SQR3_SQ1_N(18), #endif }; // 4x oversample is plenty static constexpr int oversample = 4; static adcsample_t samples[oversample]; float getMcuTemperature() { // Temperature sensor is only physically wired to ADC1 adcConvert(&ADCD1, &tempSensorConvGroup, samples, oversample); uint32_t sum = 0; for (size_t i = 0; i < oversample; i++) { sum += samples[i]; } float volts = (float)sum / (4096 * oversample); volts *= engineConfiguration->adcVcc; volts -= 0.760f; // Subtract the reference voltage at 25 deg C float degrees = volts / 0.0025f; // Divide by slope 2.5mV degrees += 25.0; // Add the 25 deg C if (degrees > 150.0f || degrees < -50.0f) { /* * we have a sporadic issue with this check todo https://github.com/rusefi/rusefi/issues/2552 criticalError("Invalid CPU temperature measured %f", degrees); */ } return degrees; } // See https://github.com/rusefi/rusefi/issues/976 for discussion on these values #define ADC_SAMPLING_SLOW ADC_SAMPLE_56 #define ADC_SAMPLING_FAST ADC_SAMPLE_28 // Slow ADC has 16 channels we can sample, or 32 if ADC mux mode is enabled. constexpr size_t adcChannelCount = 16; // Conversion group for slow channels // This simply samples every channel in sequence static constexpr ADCConversionGroup convGroupSlow = { .circular = FALSE, .num_channels = adcChannelCount, .end_cb = nullptr, .error_cb = nullptr, /* HW dependent part.*/ .cr1 = 0, .cr2 = ADC_CR2_SWSTART, // Configure all channels to ADC_SAMPLING_SLOW sample time .smpr1 = ADC_SMPR1_SMP_AN10(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN11(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN12(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN13(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN14(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN15(ADC_SAMPLING_SLOW), .smpr2 = ADC_SMPR2_SMP_AN0(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN1(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN2(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN3(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN4(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN5(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN6(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN7(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN8(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN9(ADC_SAMPLING_SLOW), .htr = 0, .ltr = 0, // Simply sequence every channel in order .sqr1 = ADC_SQR1_SQ13_N(12) | ADC_SQR1_SQ14_N(13) | ADC_SQR1_SQ15_N(14) | ADC_SQR1_SQ16_N(15) | ADC_SQR1_NUM_CH(16), // Conversion group sequence 13...16 + sequence length .sqr2 = ADC_SQR2_SQ7_N(6) | ADC_SQR2_SQ8_N(7) | ADC_SQR2_SQ9_N(8) | ADC_SQR2_SQ10_N(9) | ADC_SQR2_SQ11_N(10) | ADC_SQR2_SQ12_N(11), // Conversion group sequence 7...12 .sqr3 = ADC_SQR3_SQ1_N(0) | ADC_SQR3_SQ2_N(1) | ADC_SQR3_SQ3_N(2) | ADC_SQR3_SQ4_N(3) | ADC_SQR3_SQ5_N(4) | ADC_SQR3_SQ6_N(5), // Conversion group sequence 1...6 }; static NO_CACHE adcsample_t slowSampleBuffer[SLOW_ADC_OVERSAMPLE * adcChannelCount]; static bool readBatch(adcsample_t* convertedSamples, size_t start) { msg_t result = adcConvert(&ADCD1, &convGroupSlow, slowSampleBuffer, SLOW_ADC_OVERSAMPLE); // If something went wrong - try again later if (result != MSG_OK) { return false; } // Average samples to get some noise filtering and oversampling for (size_t i = 0; i < adcChannelCount; i++) { uint32_t sum = 0; size_t index = i; for (size_t j = 0; j < SLOW_ADC_OVERSAMPLE; j++) { sum += slowSampleBuffer[index]; index += adcChannelCount; } adcsample_t value = static_cast(sum / SLOW_ADC_OVERSAMPLE); convertedSamples[start + i] = value; } return true; } bool readSlowAnalogInputs(adcsample_t* convertedSamples) { bool result = true; result &= readBatch(convertedSamples, 0); #ifdef ADC_MUX_PIN muxControl.setValue(1, /*force*/true); // read the second batch, starting where we left off result &= readBatch(convertedSamples, adcChannelCount); muxControl.setValue(0, /*force*/true); #endif return result; } #if EFI_USE_FAST_ADC #include "AdcConfiguration.h" extern AdcDevice fastAdc; static constexpr FastAdcToken invalidToken = (FastAdcToken)(-1); FastAdcToken enableFastAdcChannel(const char*, adc_channel_e channel) { if (!isAdcChannelValid(channel)) { return invalidToken; } return fastAdc.internalAdcIndexByHardwareIndex[static_cast(channel)]; } adcsample_t getFastAdc(FastAdcToken token) { if (token == invalidToken) { return 0; } return fastAdc.samples[token]; } #endif #endif // HAL_USE_ADC