/** * @file HIP9011.cpp * @brief HIP9011/TPIC8101 driver * * pin1 VDD * pin2 GND * * pin8 Chip Select - CS * pin11 Slave Data Out - MISO- * pin12 Slave Data In - MOSI * pin13 SPI clock - SCLK * * * * http://www.ti.com/lit/ds/symlink/tpic8101.pdf * http://www.intersil.com/content/dam/Intersil/documents/hip9/hip9011.pdf * http://www.intersil.com/content/dam/Intersil/documents/an97/an9770.pdf * http://e2e.ti.com/cfs-file/__key/telligent-evolution-components-attachments/00-26-01-00-00-42-36-40/TPIC8101-Training.pdf * * max SPI frequency: 5MHz max * * @date Nov 27, 2013 * @author Andrey Belomutskiy, (c) 2012-2014 */ #include "main.h" #include "engine.h" #include "settings.h" #include "pin_repository.h" #include "hardware.h" #include "rpm_calculator.h" #include "trigger_central.h" #include "hip9011_lookup.h" #include "HIP9011.h" #if EFI_HIP_9011 || defined(__DOXYGEN__) #define HIP_DEBUG FALSE extern OutputPin outputs[IO_PIN_COUNT]; extern pin_output_mode_e DEFAULT_OUTPUT; /** * band index is only send to HIP chip on startup */ static int bandIndex; static int currentGainIndex = -1; static int currentIntergratorIndex = -1; static int settingUpdateCount = 0; /** * Int/Hold pin is controlled from scheduler callbacks which are set according to current RPM * * The following flags make sure that we only have SPI communication while not integrating */ static bool_t isIntegrating = false; /** * we cannot afford relatively slow synchronous SPI communication from the scheduler callbacks, thus * SPI is taken care from a dedicated thread where we care less about how long it would take * true by default so that we can update the settings before starting to integrate */ static bool_t needToSendSpiCommand = true; static scheduling_s startTimer[2]; static scheduling_s endTimer[2]; static Logging logger; static THD_WORKING_AREA(htThreadStack, UTILITY_THREAD_STACK_SIZE); // SPI_CR1_BR_1 // 5MHz // SPI_CR1_CPHA Clock Phase // todo: nicer method which would mention SPI speed explicitly? static SPIConfig spicfg = { NULL, /* HW dependent part.*/ NULL, 0, SPI_CR1_MSTR | //SPI_CR1_BR_1 // 5MHz SPI_CR1_CPHA | SPI_CR1_BR_0 | SPI_CR1_BR_1 | SPI_CR1_BR_2 }; static unsigned char tx_buff[1]; static unsigned char rx_buff[1]; static int nonZeroResponse = 0; #define SPI_SYNCHRONOUS(value) \ spiSelect(driver); \ tx_buff[0] = value; \ spiExchange(driver, 1, tx_buff, rx_buff); \ spiUnselect(driver); \ if (rx_buff[0] != 0) nonZeroResponse++; // todo: make this configurable static SPIDriver *driver = &SPID2; EXTERN_ENGINE ; static msg_t ivThread(int param) { chRegSetThreadName("HIP"); while (true) { /** * do we need this configurable? probably not */ chThdSleepMilliseconds(HIP_THREAD_PERIOD); int integratorIndex = getIntegrationIndexByRpm(engine->rpmCalculator.rpmValue); int gainIndex = getHip9011GainIndex(boardConfiguration->hip9011Gain); if (currentGainIndex != gainIndex || currentIntergratorIndex != integratorIndex) { needToSendSpiCommand = true; } /** * Loop if nothing has really changed */ if (!needToSendSpiCommand) continue; /** * Loop if the chip is busy. The 'needToSend' flag would prevent next integration, but we * need to let current integration finish */ if (isIntegrating) continue; settingUpdateCount++; SPI_SYNCHRONOUS(SET_GAIN_CMD + gainIndex); currentGainIndex = gainIndex; SPI_SYNCHRONOUS(SET_INTEGRATOR_CMD + integratorIndex); currentIntergratorIndex = integratorIndex; needToSendSpiCommand = false; //// BAND_PASS_CMD // SPI_SYNCHRONOUS(0x0 | (40 & 0x3F)); // // Set the gain 0b10000000 // SPI_SYNCHRONOUS(0x80 | (49 & 0x3F)); // // Set the integration time constant 0b11000000 // SPI_SYNCHRONOUS(0xC0 | (31 & 0x1F)); // // SET_ADVANCED_MODE 0b01110001 // SPI_SYNCHRONOUS(tx_buff[0] = 0x71;) } #if defined __GNUC__ return 0; #endif } static void showHipInfo(void) { printSpiState(&logger, boardConfiguration); scheduleMsg(&logger, "bore=%f freq=%f", engineConfiguration->cylinderBore, BAND(engineConfiguration->cylinderBore)); scheduleMsg(&logger, "band_index=%d gain_index=%d", bandIndex, currentGainIndex); scheduleMsg(&logger, "integrator index=%d", currentIntergratorIndex); scheduleMsg(&logger, "spi= int=%s response count=%d", hwPortname(boardConfiguration->hip9011IntHoldPin), nonZeroResponse); scheduleMsg(&logger, "CS=%s updateCount=%d", hwPortname(boardConfiguration->hip9011CsPin), settingUpdateCount); } void setHip9011FrankensoPinout(void) { /** * SPI on PB13/14/15 */ boardConfiguration->isHip9011Enabled = true; boardConfiguration->hip9011CsPin = GPIOD_0; boardConfiguration->hip9011IntHoldPin = GPIOB_11; boardConfiguration->is_enabled_spi_2 = true; } static void startIntegration(void) { if (!needToSendSpiCommand) { /** * SPI communication is only allowed while not integrating, so we postpone the exchange * until we are done integrating */ isIntegrating = true; turnPinHigh(HIP9011_INT_HOLD); } } static void endIntegration(void) { /** * isIntegrating could be 'false' if an SPI command was pending thus we did not integrate during this * engine cycle */ if (isIntegrating) { turnPinLow(HIP9011_INT_HOLD); isIntegrating = false; } } /** * Shaft Position callback used to start or finish HIP integration */ static void intHoldCallback(trigger_event_e ckpEventType, uint32_t index DECLARE_ENGINE_PARAMETER_S) { // this callback is invoked on interrupt thread if (index != 0) return; int rpm = engine->rpmCalculator.rpmValue; if (!isValidRpm(rpm)) return; int structIndex = getRevolutionCounter() % 2; // todo: schedule this based on closest trigger event, same as ignition works scheduleByAngle(rpm, &startTimer[structIndex], engineConfiguration->knockDetectionWindowStart, (schfunc_t) &startIntegration, NULL); scheduleByAngle(rpm, &endTimer[structIndex], engineConfiguration->knockDetectionWindowEnd, (schfunc_t) &endIntegration, NULL); } static void setGain(float value) { boardConfiguration->hip9011Gain = value; showHipInfo(); } void initHip9011(void) { if (!boardConfiguration->isHip9011Enabled) return; initLogging(&logger, "HIP driver"); // todo: apply new properties on the fly prepareHip9011RpmLookup( engineConfiguration->knockDetectionWindowEnd - engineConfiguration->knockDetectionWindowStart); // todo: configurable // driver = getSpiDevice(boardConfiguration->hip9011SpiDevice); spicfg.ssport = getHwPort(boardConfiguration->hip9011CsPin); spicfg.sspad = getHwPin(boardConfiguration->hip9011CsPin); outputPinRegisterExt2("hip int/hold", &outputs[(int)HIP9011_INT_HOLD], boardConfiguration->hip9011IntHoldPin, &DEFAULT_OUTPUT); outputPinRegisterExt2("hip CS", &outputs[(int)SPI_CS_HIP9011], boardConfiguration->hip9011CsPin, &DEFAULT_OUTPUT); scheduleMsg(&logger, "Starting HIP9011/TPIC8101 driver"); spiStart(driver, &spicfg); bandIndex = getHip9011BandIndex(engineConfiguration->cylinderBore); /** * this engine cycle callback would be scheduling actual integration start and end callbacks */ addTriggerEventListener(&intHoldCallback, "DD int/hold", engine); // MISO PB14 // palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(EFI_SPI2_AF) | PAL_STM32_PUDR_PULLUP); // MOSI PB15 // palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(EFI_SPI2_AF) | PAL_STM32_OTYPE_OPENDRAIN); addConsoleAction("hipinfo", showHipInfo); addConsoleActionF("set_gain", setGain); // '0' for 4MHz SPI_SYNCHRONOUS(SET_PRESCALER_CMD + 0); // '0' for channel #1 SPI_SYNCHRONOUS(SET_CHANNEL_CMD + 0); // band index depends on cylinder bore SPI_SYNCHRONOUS(SET_BAND_PASS_CMD + bandIndex); chThdCreateStatic(htThreadStack, sizeof(htThreadStack), NORMALPRIO, (tfunc_t) ivThread, NULL); } #endif