#pragma once namespace fft { #ifndef M_PI #define M_PI 3.1415926535897932 #endif inline bool isPow(const size_t num) { return num && (!(num & (num - 1))); } void rerrange(complex_type* data, const size_t num_elements) { size_t target_index = 0; size_t bit_mask; complex_type buffer; for (size_t i = 0; i < num_elements; ++i) { if (target_index > i) { buffer = data[target_index]; data[target_index] = data[i]; data[i]= buffer; } bit_mask = num_elements; while (target_index & (bit_mask >>= 1)) { target_index &= ~bit_mask; } target_index |= bit_mask; } } bool transform(complex_type* data, const size_t count) { double local_pi = -M_PI; size_t next, match; real_type sine; real_type delta; complex_type mult, factor, product; for (size_t i = 1; i < count; i <<= 1) { next = i << 1; delta = local_pi / i; sine = sin(0.5 * delta); mult = complex_type(-2.0 * sine * sine, sin(delta)); factor = 1.0; for (size_t j = 0; j < i; ++j) { for (size_t k = j; k < count; k += next) { match = k + i; product = data[match] * factor; data[match] = data[k] - product; data[k] += product; } factor = mult * factor + factor; } } return true; } static bool ffti(complex_type* data, const size_t size) { if(!isPow(size)) { return false; } rerrange(data, size); return transform(data, size); } bool fft_adc_sample(float * w, float ratio, float sensitivity, const adcsample_t* data_in, complex_type* data_out, const size_t size) { for(size_t i = 0; i < size; ++i) { float voltage = ratio * data_in[i]; data_out[i] = complex_type(sensitivity * voltage * w[i], 0.0); } return ffti(data_out, size); } bool fft_adc_sample_filtered(Biquad& knockFilter, float * w, float ratio, float sensitivity, const adcsample_t* data_in, complex_type* data_out, const size_t size) { for(size_t i = 0; i < size; ++i) { float voltage = ratio * data_in[i]; float filtered = knockFilter.filter(voltage); data_out[i] = complex_type(filtered * w[i] * sensitivity, 0.0); } return ffti(data_out, size); } bool fft(const real_type* data_in, complex_type* data_out, const size_t size) { for(size_t i = 0; i < size; ++i) { data_out[i] = complex_type(data_in[i], 0.0); } return ffti(data_out, size); } // Fast inverse square root aka "Quake 3 fast inverse square root" float fast_sqrt(float x) { union { float x; int32_t i; } u; u.x = x; u.i = 0x5f375a86 - (u.i >> 1); float xu = x * u.x; float xu2 = xu * u.x; u.x = (0.125 * 3.0) * xu * (5.0 - xu2 * ((10.0 / 3.0) - xu2)); return u.x; } float amplitude(const complex_type& fft) { return fast_sqrt(fft.real()*fft.real() + fft.imag()*fft.imag()); } void cosine_window(float * w, unsigned n, const float * coeff, unsigned ncoeff, bool sflag) { if (n == 1) { w[0] = 1.0; } else { const unsigned wlength = sflag ? (n - 1) : n; for (unsigned i = 0; i < n; ++i) { float wi = 0.0; for (unsigned j = 0; j < ncoeff; ++j) { wi += coeff[j] * cos(i * j * 2.0 * M_PI / wlength); } w[i] = wi; } } } void rectwin(float * w, unsigned n) { for (unsigned i = 0; i < n; ++i) { w[i] = 1.0; } } void hann(float * w, unsigned n, bool sflag) { const float coeff[2] = { 0.5, -0.5 }; cosine_window(w, n, coeff, sizeof(coeff) / sizeof(float), sflag); } void hamming(float * w, unsigned n, bool sflag) { const float coeff[2] = { 0.54, -0.46 }; cosine_window(w, n, coeff, sizeof(coeff) / sizeof(float), sflag); } void blackman(float * w, unsigned n, bool sflag) { const float coeff[3] = { 0.42, -0.5, 0.08 }; cosine_window(w, n, coeff, sizeof(coeff) / sizeof(float), sflag); } void blackmanharris(float * w, unsigned n, bool sflag) { const float coeff[4] = { 0.35875, -0.48829, 0.14128, -0.01168 }; cosine_window(w, n, coeff, sizeof(coeff) / sizeof(float), sflag); } }