/** * @file speed_density.cpp * * See http://rusefi.com/wiki/index.php?title=Manual:Software:Fuel_Control#Speed_Density for details * * @date May 29, 2014 * @author Andrey Belomutskiy, (c) 2012-2018 */ #include "global.h" #include "globalaccess.h" #include "speed_density.h" #include "interpolation.h" #include "engine.h" #include "engine_math.h" #include "maf2map.h" #include "config_engine_specs.h" #define rpmMin 500 #define rpmMax 8000 EXTERN_ENGINE; fuel_Map3D_t veMap("VE"); fuel_Map3D_t ve2Map("VE2"); afr_Map3D_t afrMap("AFR", 1.0 / AFR_STORAGE_MULT); baroCorr_Map3D_t baroCorrMap("baro"); #define tpMin 0 #define tpMax 100 // http://rusefi.com/math/t_charge.html /***panel:Charge Temperature*/ temperature_t getTCharge(int rpm, float tps, float coolantTemp, float airTemp DECLARE_ENGINE_PARAMETER_SUFFIX) { if (cisnan(coolantTemp) || cisnan(airTemp)) { warning(CUSTOM_ERR_NAN_TCHARGE, "t-getTCharge NaN"); return coolantTemp; } if ((engine->engineState.sd.DISPLAY_IF(isTChargeAirModel) = (CONFIG(tChargeMode) == TCHARGE_MODE_AIR_INTERP))) { const floatms_t gramsPerMsToKgPerHour = (3600.0f * 1000.0f) / 1000.0f; // We're actually using an 'old' airMass calculated for the previous cycle, but it's ok, we're not having any self-excitaton issues floatms_t airMassForEngine = engine->engineState.sd./***display*/airMassInOneCylinder * CONFIG(specs.cylindersCount); // airMass is in grams per 1 cycle for 1 cyl. Convert it to airFlow in kg/h for the engine. // And if the engine is stopped (0 rpm), then airFlow is also zero (avoiding NaN division) floatms_t airFlow = (rpm == 0) ? 0 : airMassForEngine * gramsPerMsToKgPerHour / getEngineCycleDuration(rpm PASS_ENGINE_PARAMETER_SUFFIX); // just interpolate between user-specified min and max coefs, based on the max airFlow value DISPLAY_TEXT(interpolate_Air_Flow) engine->engineState.DISPLAY_FIELD(airFlow) = airFlow; DISPLAY_TEXT(Between) engine->engineState.sd.Tcharge_coff = interpolateClamped(0.0, CONFIG(DISPLAY_CONFIG(tChargeAirCoefMin)), CONFIG(DISPLAY_CONFIG(tChargeAirFlowMax)), CONFIG(DISPLAY_CONFIG(tChargeAirCoefMax)), airFlow); // save it for console output (instead of MAF massAirFlow) } else/* DISPLAY_ELSE */ { // TCHARGE_MODE_RPM_TPS DISPLAY_TEXT(interpolate_3D) DISPLAY_SENSOR(RPM) DISPLAY_TEXT(and) DISPLAY_SENSOR(TPS) DISPLAY_TEXT(EOL) DISPLAY_TEXT(Between) float minRpmKcurrentTPS = interpolateMsg("minRpm", tpMin, CONFIG(DISPLAY_CONFIG(tChargeMinRpmMinTps)), tpMax, CONFIG(DISPLAY_CONFIG(tChargeMinRpmMaxTps)), tps); DISPLAY_TEXT(EOL) float maxRpmKcurrentTPS = interpolateMsg("maxRpm", tpMin, CONFIG(DISPLAY_CONFIG(tChargeMaxRpmMinTps)), tpMax, CONFIG(DISPLAY_CONFIG(tChargeMaxRpmMaxTps)), tps); engine->engineState.sd.Tcharge_coff = interpolateMsg("Kcurr", rpmMin, minRpmKcurrentTPS, rpmMax, maxRpmKcurrentTPS, rpm); /* DISPLAY_ENDIF */ } if (cisnan(engine->engineState.sd.Tcharge_coff)) { warning(CUSTOM_ERR_T2_CHARGE, "t2-getTCharge NaN"); return coolantTemp; } // We use a robust interp. function for proper tcharge_coff clamping. float Tcharge = interpolateClamped(0.0f, coolantTemp, 1.0f, airTemp, engine->engineState.sd.Tcharge_coff); if (cisnan(Tcharge)) { // we can probably end up here while resetting engine state - interpolation would fail warning(CUSTOM_ERR_TCHARGE_NOT_READY, "getTCharge NaN"); return coolantTemp; } return Tcharge; } /** * is J/g*K */ #define GAS_R 0.28705 /** * @return air mass in grams */ static float getCycleAirMass(float volumetricEfficiency, float MAP, float tempK DECLARE_GLOBAL_SUFFIX) { return (get_specs_displacement * volumetricEfficiency * MAP) / (GAS_R * tempK); } float getCylinderAirMass(float volumetricEfficiency, float MAP, float tempK DECLARE_GLOBAL_SUFFIX) { return getCycleAirMass(volumetricEfficiency, MAP, tempK PASS_GLOBAL_SUFFIX) / get_specs_cylindersCount; } /** * @return per cylinder injection time, in seconds */ float sdMath(float airMass, float AFR DECLARE_GLOBAL_SUFFIX) { /** * todo: pre-calculate gramm/second injector flow to save one multiplication * open question if that's needed since that's just a multiplication */ float injectorFlowRate = cc_minute_to_gramm_second(get_injector_flow); /** * injection_pulse_duration = fuel_mass / injector_flow * fuel_mass = air_mass / target_afr * * injection_pulse_duration = (air_mass / target_afr) / injector_flow */ return airMass / (AFR * injectorFlowRate); } EXTERN_ENGINE; /** * @return per cylinder injection time, in Milliseconds */ floatms_t getSpeedDensityFuel(float map DECLARE_GLOBAL_SUFFIX) { /** * most of the values are pre-calculated for performance reasons */ float tChargeK = ENGINE(engineState.sd.tChargeK); if (cisnan(tChargeK)) { warning(CUSTOM_ERR_TCHARGE_NOT_READY2, "tChargeK not ready"); // this would happen before we have CLT reading for example return 0; } efiAssert(CUSTOM_ERR_ASSERT, !cisnan(map), "NaN map", 0); engine->engineState.sd.manifoldAirPressureAccelerationAdjustment = engine->engineLoadAccelEnrichment.getEngineLoadEnrichment(PASS_GLOBAL_SIGNATURE); float adjustedMap = engine->engineState.sd.adjustedManifoldAirPressure = map + engine->engineState.sd.manifoldAirPressureAccelerationAdjustment; efiAssert(CUSTOM_ERR_ASSERT, !cisnan(adjustedMap), "NaN adjustedMap", 0); float airMass = getCylinderAirMass(ENGINE(engineState.currentBaroCorrectedVE), adjustedMap, tChargeK PASS_GLOBAL_SUFFIX); if (cisnan(airMass)) { warning(CUSTOM_ERR_6685, "NaN airMass"); return 0; } #if EFI_PRINTF_FUEL_DETAILS printf("map=%.2f adjustedMap=%.2f airMass=%.2f\t\n", map, adjustedMap, engine->engineState.sd.adjustedManifoldAirPressure); #endif /*EFI_PRINTF_FUEL_DETAILS */ engine->engineState.sd.airMassInOneCylinder = airMass; return sdMath(airMass, ENGINE(engineState.targetAFR) PASS_GLOBAL_SUFFIX) * 1000; } // Default baro table is all 1.0, we can't recommend a reasonable default here static const baro_corr_table_t default_baro_corr = {1}; void setDefaultVETable(DECLARE_ENGINE_PARAMETER_SIGNATURE) { setRpmTableBin(config->veRpmBins, FUEL_RPM_COUNT); veMap.setAll(80); // setRpmTableBin(engineConfiguration->ve2RpmBins, FUEL_RPM_COUNT); // setLinearCurve(engineConfiguration->ve2LoadBins, FUEL_LOAD_COUNT, 10, 300, 1); // ve2Map.setAll(0.81); setRpmTableBin(config->afrRpmBins, FUEL_RPM_COUNT); afrMap.setAll(14.7); setRpmTableBin(engineConfiguration->baroCorrRpmBins, BARO_CORR_SIZE); setLinearCurve(engineConfiguration->baroCorrPressureBins, BARO_CORR_SIZE, 75, 105, 1); memcpy(engineConfiguration->baroCorrTable, default_baro_corr, sizeof(default_baro_corr)); } void initSpeedDensity(DECLARE_ENGINE_PARAMETER_SIGNATURE) { veMap.init(config->veTable, config->veLoadBins, config->veRpmBins); // ve2Map.init(engineConfiguration->ve2Table, engineConfiguration->ve2LoadBins, engineConfiguration->ve2RpmBins); afrMap.init(config->afrTable, config->afrLoadBins, config->afrRpmBins); baroCorrMap.init(engineConfiguration->baroCorrTable, engineConfiguration->baroCorrPressureBins, engineConfiguration->baroCorrRpmBins); initMaf2Map(); }