#include "pch.h" #include "adc_subscription.h" #include "biquad.h" #if EFI_UNIT_TEST /*static*/ void AdcSubscription::SubscribeSensor(FunctionalSensor&, adc_channel_e, float, float) { } /*static*/ void AdcSubscription::UnsubscribeSensor(FunctionalSensor&) { } #else struct AdcSubscriptionEntry { FunctionalSensor *Sensor; float VoltsPerAdcVolt; Biquad Filter; adc_channel_e Channel; bool HasUpdated = false; }; static AdcSubscriptionEntry s_entries[16]; static AdcSubscriptionEntry* findEntry(FunctionalSensor* sensor) { for (size_t i = 0; i < efi::size(s_entries); i++) { if (s_entries[i].Sensor == sensor) { return &s_entries[i]; } } return nullptr; } static AdcSubscriptionEntry* findEntry() { // Find an entry with no sensor set return findEntry(nullptr); } /*static*/ void AdcSubscription::SubscribeSensor(FunctionalSensor &sensor, adc_channel_e channel, float lowpassCutoff, float voltsPerAdcVolt /*= 0.0f*/) { // Don't subscribe null channels if (!isAdcChannelValid(channel)) { return; } const char* name = sensor.getSensorName(); if (/*type-limited (int)setting < 0 || */(int)channel >= HW_MAX_ADC_INDEX) { firmwareError(CUSTOM_INVALID_ADC, "Invalid ADC setting %s", name); return; } auto entry = findEntry(); // Ensure that a free entry was found if (!entry) { firmwareError(CUSTOM_INVALID_ADC, "too many ADC subscriptions"); return; } #if EFI_PROD_CODE // Enable the input pin efiSetPadMode(name, getAdcChannelBrainPin(name, channel), PAL_MODE_INPUT_ANALOG); #endif /* EFI_PROD_CODE */ // if 0, default to the board's divider coefficient if (voltsPerAdcVolt == 0) { voltsPerAdcVolt = engineConfiguration->analogInputDividerCoefficient; } // Populate the entry entry->VoltsPerAdcVolt = voltsPerAdcVolt; entry->Channel = channel; entry->Filter.configureLowpass(SLOW_ADC_RATE, lowpassCutoff); entry->HasUpdated = false; // Set the sensor last - it's the field we use to determine whether this entry is in use entry->Sensor = &sensor; } /*static*/ void AdcSubscription::UnsubscribeSensor(FunctionalSensor& sensor) { auto entry = findEntry(&sensor); if (!entry) { // This sensor wasn't configured, skip it return; } #if EFI_PROD_CODE // Release the pin efiSetPadUnused(getAdcChannelBrainPin("adc unsubscribe", entry->Channel)); #endif // EFI_PROD_CODE sensor.unregister(); // clear the sensor first to mark this entry not in use entry->Sensor = nullptr; entry->VoltsPerAdcVolt = 0; entry->Channel = EFI_ADC_NONE; } void AdcSubscription::UpdateSubscribers(efitick_t nowNt) { ScopePerf perf(PE::AdcSubscriptionUpdateSubscribers); for (size_t i = 0; i < efi::size(s_entries); i++) { auto &entry = s_entries[i]; if (!entry.Sensor) { // Skip unconfigured entries continue; } float mcuVolts = getVoltage("sensor", entry.Channel); float sensorVolts = mcuVolts * entry.VoltsPerAdcVolt; // On the very first update, preload the filter as if we've been // seeing this value for a long time. This prevents a slow ramp-up // towards the correct value just after startup if (!entry.HasUpdated) { entry.Filter.cookSteadyState(sensorVolts); entry.HasUpdated = true; } float filtered = entry.Filter.filter(sensorVolts); entry.Sensor->postRawValue(filtered, nowNt); } } #if EFI_PROD_CODE void AdcSubscription::PrintInfo() { for (size_t i = 0; i < efi::size(s_entries); i++) { auto& entry = s_entries[i]; if (!entry.Sensor) { // Skip unconfigured entries continue; } const auto name = entry.Sensor->getSensorName(); float mcuVolts = getVoltage("sensor", entry.Channel); float sensorVolts = mcuVolts * entry.VoltsPerAdcVolt; auto channel = entry.Channel; char pinNameBuffer[16]; efiPrintf( "%s ADC%d m=%d %s adc=%.2f/input=%.2fv/divider=%.2f", name, channel, getAdcMode(channel), getPinNameByAdcChannel(name, channel, pinNameBuffer), mcuVolts, sensorVolts, entry.VoltsPerAdcVolt ); } } #endif // EFI_PROD_CODE #endif // !EFI_UNIT_TEST