/* * test_pwm_generator.cpp * * @date Dec 8, 2018 * Author: user */ #include "global.h" #include "unit_test_framework.h" #include "pwm_generator_logic.h" #define LOW_VALUE 0 #define HIGH_VALUE 1 extern int timeNowUs; static int expectedTimeOfNextEvent; static int pinValue = -1; static void testApplyPinState(int stateIndex, PwmConfig *state) /* pwm_gen_callback */ { pinValue = state->multiWave.getChannelState(/*channelIndex*/0, stateIndex); printf("PWM_test: setPinValue=%d @ timeNow=%d\r\n", pinValue, timeNowUs); } static void assertNextEvent(const char *msg, int expectedPinState, TestExecutor *executor) { printf("PWM_test: Asserting event [%s]\r\n", msg); // only one action expected in queue ASSERT_EQ( 1, executor->size()) << "PWM_test: schedulingQueue size"; // move time to next event timestamp timeNowUs = expectedTimeOfNextEvent; // execute pending actions and assert that only one action was executed assertEqualsM5(msg, " executed", 1, executor->executeAll(timeNowUs), 0); assertEqualsM5(msg, " pin state", expectedPinState, pinValue, 0); // assert that we have one new action in queue ASSERT_EQ( 1, executor->size()) << "PWM_test: queue.size"; } static void test100dutyCycle() { print("*************************************** test100dutyCycle\r\n"); expectedTimeOfNextEvent = timeNowUs = 0; TestExecutor executor; SimplePwm pwm("test PWM1"); OutputPin pin; startSimplePwm(&pwm, "unit_test", &executor, &pin, 1000 /* frequency */, 1.0 /* duty cycle */, &testApplyPinState); expectedTimeOfNextEvent += 1000; assertEqualsM2("1@1000/100", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@100", HIGH_VALUE, &executor); expectedTimeOfNextEvent += 1000; assertNextEvent("exec2@100", HIGH_VALUE, &executor); expectedTimeOfNextEvent += 1000; assertNextEvent("exec3@100", HIGH_VALUE, &executor); } static void testSwitchToNanPeriod() { print("*************************************** testSwitchToNanPeriod\r\n"); expectedTimeOfNextEvent = timeNowUs = 0; TestExecutor executor; SimplePwm pwm("test PWM1"); OutputPin pin; startSimplePwm(&pwm, "unit_test", &executor, &pin, 1000 /* frequency */, 0.60 /* duty cycle */, &testApplyPinState); expectedTimeOfNextEvent += 600; assertEqualsM2("1@1000/70", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@70", LOW_VALUE, &executor); ASSERT_EQ( 600, timeNowUs) << "time1"; expectedTimeOfNextEvent += 400; assertNextEvent("exec2@70", HIGH_VALUE, &executor); pwm.setFrequency(NAN); expectedTimeOfNextEvent += 600; assertEqualsM2("1@1000/NAN", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec2@NAN", LOW_VALUE, &executor); expectedTimeOfNextEvent += MS2US(NAN_FREQUENCY_SLEEP_PERIOD_MS); assertEqualsM2("2@1000/NAN", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec3@NAN", LOW_VALUE, &executor); } TEST(misc, testPwmGenerator) { test100dutyCycle(); testSwitchToNanPeriod(); print("*************************************** testPwmGenerator\r\n"); expectedTimeOfNextEvent = timeNowUs = 0; TestExecutor executor; SimplePwm pwm("test PWM3"); OutputPin pin; startSimplePwm(&pwm, "unit_test", &executor, &pin, 1000 /* frequency */, 0.80 /* duty cycle */, &testApplyPinState); expectedTimeOfNextEvent += 800; assertEqualsM2("1@1000/80", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@0", LOW_VALUE, &executor); ASSERT_EQ( 800, timeNowUs) << "time1"; expectedTimeOfNextEvent += 200; assertEqualsM2("2@1000/80", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); // above we had vanilla duty cycle, now let's handle a special case pwm.setSimplePwmDutyCycle(0); assertEqualsM2("2@1000/0", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@1", LOW_VALUE, &executor); ASSERT_EQ( 1000, timeNowUs) << "time2"; expectedTimeOfNextEvent += 1000; assertEqualsM2("3@1000/0", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@2", LOW_VALUE /* pin value */, &executor); ASSERT_EQ( 2000, timeNowUs) << "time3"; expectedTimeOfNextEvent += 1000; assertEqualsM2("4@1000/0", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@3", LOW_VALUE /* pin value */, &executor); ASSERT_EQ( 3000, timeNowUs) << "time4"; expectedTimeOfNextEvent += 1000; assertEqualsM2("5@1000/0", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@4", LOW_VALUE /* pin value */, &executor); expectedTimeOfNextEvent += 1000; assertEqualsM2("6@1000/0", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@5", LOW_VALUE /* pin value */, &executor); expectedTimeOfNextEvent += 1000; ASSERT_EQ( 5000, timeNowUs) << "time4"; assertEqualsM2("7@1000/0", expectedTimeOfNextEvent, executor.getForUnitTest(0)->momentX, 0); assertNextEvent("exec@6", LOW_VALUE /* pin value */, &executor); }