/**
* @file electronic_throttle.cpp
* @brief Electronic Throttle driver
*
* @see test test_etb.cpp
*
* PPS=pedal position sensor=AcceleratorPedal
* TPS=throttle position sensor, this one is inside ETB=electronic throttle body
*
* Limited user documentation at https://github.com/rusefi/rusefi/wiki/HOWTO_electronic_throttle_body
*
*
* ETB is controlled according to pedal position input (pedal position sensor is a potentiometer)
* pedal 0% means pedal not pressed / idle
* pedal 100% means pedal all the way down
* (not TPS - not the one you can calibrate in TunerStudio)
*
*
* See also pid.cpp
*
* Relevant console commands:
*
* @date Dec 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see .
*/
#include "pch.h"
#include "electronic_throttle_impl.h"
#if EFI_ELECTRONIC_THROTTLE_BODY
#include "dc_motor.h"
#include "dc_motors.h"
#include "defaults.h"
#include "tunerstudio.h"
#if defined(HAS_OS_ACCESS)
#error "Unexpected OS ACCESS HERE"
#endif
#if HW_PROTEUS
#include "proteus_meta.h"
#endif // HW_PROTEUS
#ifndef ETB_MAX_COUNT
#define ETB_MAX_COUNT 2
#endif /* ETB_MAX_COUNT */
static pedal2tps_t pedal2tpsMap{"p2t"};
static Map3D throttle2TrimTable{"t2t"};
static Map3D tcEtbDropTable{"tce"};
constexpr float etbPeriodSeconds = 1.0f / ETB_LOOP_FREQUENCY;
//static bool startupPositionError = false;
//#define STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD 5
static const float hardCodedetbHitachiBiasBins[8] = {0.0, 19.0, 21.0, 22.0, 23.0, 25.0, 30.0, 100.0};
static const float hardCodedetbHitachiBiasValues[8] = {-18.0, -17.0, -15.0, 0.0, 16.0, 20.0, 20.0, 20.0};
/* Generated by TS2C on Thu Aug 20 21:10:02 EDT 2020*/
void setHitachiEtbBiasBins() {
copyArray(config->etbBiasBins, hardCodedetbHitachiBiasBins);
copyArray(config->etbBiasValues, hardCodedetbHitachiBiasValues);
}
static SensorType functionToPositionSensor(dc_function_e func) {
switch(func) {
case DC_Throttle1: return SensorType::Tps1;
case DC_Throttle2: return SensorType::Tps2;
case DC_IdleValve: return SensorType::IdlePosition;
case DC_Wastegate: return SensorType::WastegatePosition;
default: return SensorType::Invalid;
}
}
static SensorType functionToTpsSensor(dc_function_e func) {
switch(func) {
case DC_Throttle1: return SensorType::Tps1;
default: return SensorType::Tps2;
}
}
static SensorType functionToTpsSensorPrimary(dc_function_e func) {
switch(func) {
case DC_Throttle1: return SensorType::Tps1Primary;
default: return SensorType::Tps2Primary;
}
}
static SensorType functionToTpsSensorSecondary(dc_function_e func) {
switch(func) {
case DC_Throttle1: return SensorType::Tps1Secondary;
default: return SensorType::Tps2Secondary;
}
}
#if EFI_TUNER_STUDIO
static TsCalMode functionToCalModePriMin(dc_function_e func) {
switch (func) {
case DC_Throttle1: return TsCalMode::Tps1Min;
default: return TsCalMode::Tps2Min;
}
}
static TsCalMode functionToCalModePriMax(dc_function_e func) {
switch (func) {
case DC_Throttle1: return TsCalMode::Tps1Max;
default: return TsCalMode::Tps2Max;
}
}
static TsCalMode functionToCalModeSecMin(dc_function_e func) {
switch (func) {
case DC_Throttle1: return TsCalMode::Tps1SecondaryMin;
default: return TsCalMode::Tps2SecondaryMin;
}
}
static TsCalMode functionToCalModeSecMax(dc_function_e func) {
switch (func) {
case DC_Throttle1: return TsCalMode::Tps1SecondaryMax;
default: return TsCalMode::Tps2SecondaryMax;
}
}
#endif // EFI_TUNER_STUDIO
#define ETB_DUTY_LIMIT 0.9
// this macro clamps both positive and negative percentages from about -100% to 100%
#define ETB_PERCENT_TO_DUTY(x) (clampF(-ETB_DUTY_LIMIT, 0.01f * (x), ETB_DUTY_LIMIT))
PUBLIC_API_WEAK bool isBoardAllowingLackOfPps() {
return false;
}
bool EtbController::init(dc_function_e function, DcMotor *motor, pid_s *pidParameters, const ValueProvider3D* pedalProvider) {
state = (uint8_t)EtbState::InInit;
if (function == DC_None) {
// if not configured, don't init.
state = (uint8_t)EtbState::NotEbt;
etbErrorCode = (int8_t)TpsState::None;
return false;
}
m_function = function;
m_positionSensor = functionToPositionSensor(function);
// If we are a throttle, require redundant TPS sensor
if (isEtbMode()) {
// If no sensor is configured for this throttle, skip initialization.
if (!Sensor::hasSensor(functionToTpsSensor(function))) {
etbErrorCode = (int8_t)TpsState::TpsError;
return false;
}
if (!Sensor::isRedundant(m_positionSensor)) {
etbErrorCode = (int8_t)TpsState::Redundancy;
return false;
}
}
m_motor = motor;
m_pid.initPidClass(pidParameters);
m_pedalProvider = pedalProvider;
reset();
state = (uint8_t)EtbState::SuccessfulInit;
return true;
}
void EtbController::reset() {
m_shouldResetPid = true;
etbTpsErrorCounter = 0;
etbPpsErrorCounter = 0;
}
void EtbController::onConfigurationChange(pid_s* previousConfiguration) {
if (m_motor && !m_pid.isSame(previousConfiguration)) {
m_shouldResetPid = true;
}
doInitElectronicThrottle();
}
void EtbController::showStatus() {
m_pid.showPidStatus("ETB");
}
expected EtbController::observePlant() {
expected plant = Sensor::get(m_positionSensor);
validPlantPosition = plant.Valid;
return plant;
}
void EtbController::setIdlePosition(percent_t pos) {
m_idlePosition = pos;
}
void EtbController::setWastegatePosition(percent_t pos) {
m_wastegatePosition = pos;
}
expected EtbController::getSetpoint() {
switch (m_function) {
case DC_Throttle1:
case DC_Throttle2:
return getSetpointEtb();
case DC_IdleValve:
return getSetpointIdleValve();
case DC_Wastegate:
return getSetpointWastegate();
default:
return unexpected;
}
}
expected EtbController::getSetpointIdleValve() const {
// VW ETB idle mode uses an ETB only for idle (a mini-ETB sets the lower stop, and a normal cable
// can pull the throttle up off the stop.), so we directly control the throttle with the idle position.
#if EFI_TUNER_STUDIO && (EFI_PROD_CODE || EFI_SIMULATOR)
engine->outputChannels.etbTarget = m_idlePosition;
#endif // EFI_TUNER_STUDIO
return clampPercentValue(m_idlePosition);
}
expected EtbController::getSetpointWastegate() const {
return clampPercentValue(m_wastegatePosition);
}
float getSanitizedPedal() {
auto pedalPosition = Sensor::get(SensorType::AcceleratorPedal);
// If the pedal has failed, just use 0 position.
// This is safer than disabling throttle control - we can at least push the throttle closed
// and let the engine idle.
return clampPercentValue(pedalPosition.value_or(0));
}
PUBLIC_API_WEAK float boardAdjustEtbTarget(float currentEtbTarget) {
return currentEtbTarget;
}
expected EtbController::getSetpointEtb() {
// Autotune runs with 50% target position
if (m_isAutotune) {
return 50.0f;
}
// // A few extra preconditions if throttle control is invalid
// if (startupPositionError) {
// return unexpected;
// }
// If the pedal map hasn't been set, we can't provide a setpoint.
if (!m_pedalProvider) {
state = (uint8_t)EtbState::NoPedal;
return unexpected;
}
float sanitizedPedal = getSanitizedPedal();
float rpm = Sensor::getOrZero(SensorType::Rpm);
etbCurrentTarget = m_pedalProvider->getValue(rpm, sanitizedPedal);
percent_t etbIdlePosition = clampPercentValue(m_idlePosition);
percent_t etbIdleAddition = PERCENT_DIV * engineConfiguration->etbIdleThrottleRange * etbIdlePosition;
// Interpolate so that the idle adder just "compresses" the throttle's range upward.
// [0, 100] -> [idle, 100]
// 0% target from table -> idle position as target
// 100% target from table -> 100% target position
targetWithIdlePosition = interpolateClamped(0, etbIdleAddition, 100, 100, etbCurrentTarget);
percent_t targetPosition = boardAdjustEtbTarget(targetWithIdlePosition + getLuaAdjustment());
// just an additional logging data point
adjustedEtbTarget = targetPosition;
#if EFI_ANTILAG_SYSTEM
if (engine->antilagController.isAntilagCondition) {
targetPosition += engineConfiguration->ALSEtbAdd;
}
#endif /* EFI_ANTILAG_SYSTEM */
float vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed);
float wheelSlip = Sensor::getOrZero(SensorType::WheelSlipRatio);
tcEtbDrop = tcEtbDropTable.getValue(wheelSlip, vehicleSpeed);
// Apply any adjustment that this throttle alone needs
// Clamped to +-10 to prevent anything too wild
trim = clampF(-10, getThrottleTrim(rpm, targetPosition), 10);
targetPosition += trim + tcEtbDrop;
// Clamp before rev limiter to avoid ineffective rev limit due to crazy out of range position target
targetPosition = clampPercentValue(targetPosition);
// Lastly, apply ETB rev limiter
auto etbRpmLimit = engineConfiguration->etbRevLimitStart;
if (etbRpmLimit != 0) {
auto fullyLimitedRpm = etbRpmLimit + engineConfiguration->etbRevLimitRange;
float targetPositionBefore = targetPosition;
// Linearly taper throttle to closed from the limit across the range
targetPosition = interpolateClamped(etbRpmLimit, targetPosition, fullyLimitedRpm, 0, rpm);
// rev limit active if the position was changed by rev limiter
etbRevLimitActive = std::abs(targetPosition - targetPositionBefore) > 0.1f;
}
float minPosition = engineConfiguration->etbMinimumPosition;
// Keep the throttle just barely off the lower stop, and less than the user-configured maximum
float maxPosition = engineConfiguration->etbMaximumPosition;
// Don't allow max position over 100
maxPosition = std::min(maxPosition, 100.0f);
targetPosition = clampF(minPosition, targetPosition, maxPosition);
etbCurrentAdjustedTarget = targetPosition;
#if EFI_TUNER_STUDIO
if (m_function == DC_Throttle1) {
engine->outputChannels.etbTarget = targetPosition;
}
#endif // EFI_TUNER_STUDIO
return targetPosition;
}
void EtbController::setLuaAdjustment(float adjustment) {
luaAdjustment = adjustment;
m_luaAdjustmentTimer.reset();
}
/**
* positive adjustment opens TPS, negative closes TPS
*/
float EtbController::getLuaAdjustment() const {
// If the lua position hasn't been set in 0.2 second, don't adjust!
// This avoids a stuck throttle due to hung/rogue/etc Lua script
if (m_luaAdjustmentTimer.getElapsedSeconds() > 0.2f) {
return 0;
} else {
return luaAdjustment;
}
}
percent_t EtbController2::getThrottleTrim(float rpm, percent_t targetPosition) const {
return m_throttle2Trim.getValue(rpm, targetPosition);
}
expected EtbController::getOpenLoop(percent_t target) {
// Don't apply open loop for wastegate/idle valve, only real ETB
if (m_function != DC_Wastegate
&& m_function != DC_IdleValve) {
etbFeedForward = interpolate2d(target, config->etbBiasBins, config->etbBiasValues);
} else {
etbFeedForward = 0;
}
return etbFeedForward;
}
expected EtbController::getClosedLoopAutotune(percent_t target, percent_t actualThrottlePosition) {
// Estimate gain at current position - this should be well away from the spring and in the linear region
// GetSetpoint sets this to 50%
bool isPositive = actualThrottlePosition > target;
float autotuneAmplitude = 20;
// End of cycle - record & reset
if (!isPositive && m_lastIsPositive) {
efitick_t now = getTimeNowNt();
// Determine period
float tu = m_autotuneCycleStart.getElapsedSecondsAndReset(now);
// Determine amplitude
float a = m_maxCycleTps - m_minCycleTps;
// Filter - it's pretty noisy since the ultimate period is not very many loop periods
constexpr float alpha = 0.05;
m_a = alpha * a + (1 - alpha) * m_a;
m_tu = alpha * tu + (1 - alpha) * m_tu;
// Reset bounds
m_minCycleTps = 100;
m_maxCycleTps = 0;
// Math is for Åström–Hägglund (relay) auto tuning
// https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume5issue2/hornsey
// Publish to TS state
#if EFI_TUNER_STUDIO
// Amplitude of input (duty cycle %)
float b = 2 * autotuneAmplitude;
// Ultimate gain per A-H relay tuning rule
float ku = 4 * b / (CONST_PI * m_a);
// The multipliers below are somewhere near the "no overshoot"
// and "some overshoot" flavors of the Ziegler-Nichols method
// Kp
float kp = 0.35f * ku;
float ki = 0.25f * ku / m_tu;
float kd = 0.08f * ku * m_tu;
// Every 5 cycles (of the throttle), cycle to the next value
if (m_autotuneCounter >= 5) {
m_autotuneCounter = 0;
m_autotuneCurrentParam = (m_autotuneCurrentParam + 1) % 3; // three ETB calibs: P-I-D
}
m_autotuneCounter++;
// Multiplex 3 signals on to the {mode, value} format
engine->outputChannels.calibrationMode = (uint8_t)static_cast((uint8_t)TsCalMode::EtbKp + m_autotuneCurrentParam);
switch (m_autotuneCurrentParam) {
case 0:
engine->outputChannels.calibrationValue = kp;
break;
case 1:
engine->outputChannels.calibrationValue = ki;
break;
case 2:
engine->outputChannels.calibrationValue = kd;
break;
}
// Also output to debug channels if configured
if (engineConfiguration->debugMode == DBG_ETB_AUTOTUNE) {
// a - amplitude of output (TPS %)
engine->outputChannels.debugFloatField1 = m_a;
// b - amplitude of input (Duty cycle %)
engine->outputChannels.debugFloatField2 = b;
// Tu - oscillation period (seconds)
engine->outputChannels.debugFloatField3 = m_tu;
engine->outputChannels.debugFloatField4 = ku;
engine->outputChannels.debugFloatField5 = kp;
engine->outputChannels.debugFloatField6 = ki;
engine->outputChannels.debugFloatField7 = kd;
}
#endif
}
m_lastIsPositive = isPositive;
// Find the min/max of each cycle
if (actualThrottlePosition < m_minCycleTps) {
m_minCycleTps = actualThrottlePosition;
}
if (actualThrottlePosition > m_maxCycleTps) {
m_maxCycleTps = actualThrottlePosition;
}
// Bang-bang control the output to induce oscillation
return autotuneAmplitude * (isPositive ? -1 : 1);
}
expected EtbController::getClosedLoop(percent_t target, percent_t observation) {
if (m_shouldResetPid) {
m_pid.reset();
m_shouldResetPid = false;
}
if (m_isAutotune) {
state = (uint8_t)EtbState::Autotune;
return getClosedLoopAutotune(target, observation);
} else {
checkJam(target, observation);
// Normal case - use PID to compute closed loop part
return m_pid.getOutput(target, observation, etbPeriodSeconds);
}
}
void EtbController::setOutput(expected outputValue) {
#if EFI_TUNER_STUDIO
// Only report first-throttle stats
if (m_function == DC_Throttle1) {
engine->outputChannels.etb1DutyCycle = outputValue.value_or(0);
}
#endif
if (!m_motor) {
state = (uint8_t)EtbState::NoMotor;
return;
}
bool isEnabled;
if (!isEtbMode()) {
// technical debt: non-ETB usages of DC motor are still mixed into ETB controller?
state = (uint8_t)EtbState::NotEbt;
isEnabled = true;
} else if (!getLimpManager()->allowElectronicThrottle()) {
state = (uint8_t)EtbState::LimpProhibited;
isEnabled = false;
} else if (engineConfiguration->pauseEtbControl) {
state = (uint8_t)EtbState::Paused;
isEnabled = false;
} else if (!outputValue) {
state = (uint8_t)EtbState::NoOutput;
isEnabled = false;
} else {
state = (uint8_t)EtbState::Active;
isEnabled = true;
}
// If not ETB, or ETB is allowed, output is valid, and we aren't paused, output to motor.
if (isEnabled) {
m_motor->enable();
m_motor->set(ETB_PERCENT_TO_DUTY(outputValue.Value));
} else {
// Otherwise disable the motor.
m_motor->disable("no-ETB");
}
}
bool EtbController::checkStatus() {
#if EFI_TUNER_STUDIO
// Only debug throttle #1
if (m_function == DC_Throttle1) {
m_pid.postState(engine->outputChannels.etbStatus);
} else if (m_function == DC_Wastegate) {
m_pid.postState(engine->outputChannels.wastegateDcStatus);
}
#endif /* EFI_TUNER_STUDIO */
if (!isEtbMode()) {
// no validation for h-bridge or idle mode
return true;
}
// ETB-specific code belo. The whole mix-up between DC and ETB is shameful :(
m_pid.iTermMin = engineConfiguration->etb_iTermMin;
m_pid.iTermMax = engineConfiguration->etb_iTermMax;
// Only allow autotune with stopped engine, and on the first throttle
// Update local state about autotune
m_isAutotune = Sensor::getOrZero(SensorType::Rpm) == 0
&& engine->etbAutoTune
&& m_function == DC_Throttle1;
bool shouldCheckSensorFunction = engine->module()->analogSensorsShouldWork();
if (!m_isAutotune && shouldCheckSensorFunction) {
bool isTpsError = !Sensor::get(m_positionSensor).Valid;
// If we have an error that's new, increment the counter
if (isTpsError && !hadTpsError) {
etbTpsErrorCounter++;
}
hadTpsError = isTpsError;
bool isPpsError = !Sensor::get(SensorType::AcceleratorPedal).Valid;
// If we have an error that's new, increment the counter
if (isPpsError && !hadPpsError) {
etbPpsErrorCounter++;
}
hadPpsError = isPpsError;
} else {
// Either sensors are expected to not work, or autotune is running, so reset the error counter
etbTpsErrorCounter = 0;
etbPpsErrorCounter = 0;
}
#ifndef ETB_INTERMITTENT_LIMIT
#define ETB_INTERMITTENT_LIMIT 50
#endif
TpsState localReason = TpsState::None;
if (etbTpsErrorCounter > ETB_INTERMITTENT_LIMIT) {
localReason = TpsState::IntermittentTps;
#if EFI_SHAFT_POSITION_INPUT
} else if (engineConfiguration->disableEtbWhenEngineStopped && !engine->triggerCentral.engineMovedRecently()) {
localReason = TpsState::EngineStopped;
#endif // EFI_SHAFT_POSITION_INPUT
} else if (etbPpsErrorCounter > ETB_INTERMITTENT_LIMIT) {
localReason = TpsState::IntermittentPps;
} else if (engine->engineState.lua.luaDisableEtb) {
localReason = TpsState::Lua;
} else if (!getLimpManager()->allowElectronicThrottle()) {
localReason = TpsState::JamDetected;
} else if(!isBoardAllowingLackOfPps() && !Sensor::isRedundant(SensorType::AcceleratorPedal)) {
etbErrorCode = (int8_t)TpsState::Redundancy;
}
etbErrorCode = (int8_t)localReason;
return localReason == TpsState::None;
}
void EtbController::update() {
#if !EFI_UNIT_TEST
// If we didn't get initialized, fail fast
if (!m_motor) {
state = (uint8_t)EtbState::FailFast;
return;
}
#endif // EFI_UNIT_TEST
bool isOk = checkStatus();
if (!isOk) {
// If engine is stopped and so configured, skip the ETB update entirely
// This is quieter and pulls less power than leaving it on all the time
m_motor->disable("etb status");
return;
}
ClosedLoopController::update();
if (isEtbMode() && !validPlantPosition) {
etbErrorCode = (int8_t)TpsState::TpsError;
}
}
void EtbController::checkJam(percent_t setpoint, percent_t observation) {
float absError = std::abs(setpoint - observation);
auto jamDetectThreshold = engineConfiguration->etbJamDetectThreshold;
auto jamTimeout = engineConfiguration->etbJamTimeout;
if (jamDetectThreshold != 0 && jamTimeout != 0) {
auto nowNt = getTimeNowNt();
if (absError > jamDetectThreshold && engine->module()->getIgnState()) {
if (m_jamDetectTimer.hasElapsedSec(jamTimeout)) {
efiPrintf(" ************* ETB is jammed! ***************");
jamDetected = true;
getLimpManager()->reportEtbProblem();
}
} else {
m_jamDetectTimer.reset(nowNt);
jamDetected = false;
}
jamTimer = m_jamDetectTimer.getElapsedSeconds(nowNt);
}
}
void EtbController::autoCalibrateTps() {
// Only auto calibrate throttles
if (m_function == DC_Throttle1 || m_function == DC_Throttle2) {
m_isAutocal = true;
efiPrintf("m_isAutocal");
}
}
#if !EFI_UNIT_TEST
/**
* Things running on a timer (instead of a thread) don't participate it the RTOS's thread priority system,
* and operate essentially "first come first serve", which risks starvation.
* Since ETB is a safety critical device, we need the hard RTOS guarantee that it will be scheduled over other less important tasks.
*/
#include "periodic_thread_controller.h"
#else
#define chThdSleepMilliseconds(x) {}
#endif // EFI_UNIT_TEST
#include
template
struct EtbImpl final : public TBase {
template
EtbImpl(TArgs&&... args) : TBase(std::forward(args)...) { }
void update() override {
#if EFI_TUNER_STUDIO
if (TBase::m_isAutocal) {
// Don't allow if engine is running!
if (Sensor::getOrZero(SensorType::Rpm) > 0) {
efiPrintf(" ****************** ERROR: Not while RPM ********************");
TBase::m_isAutocal = false;
return;
}
auto motor = TBase::getMotor();
if (!motor) {
efiPrintf(" ****************** ERROR: No motor ********************");
TBase::m_isAutocal = false;
return;
}
auto myFunction = TBase::getFunction();
// First grab open
efiPrintf("Opening!");
motor->set(0.5f);
motor->enable();
chThdSleepMilliseconds(1000);
float primaryMax = Sensor::getRaw(functionToTpsSensorPrimary(myFunction));
float secondaryMax = Sensor::getRaw(functionToTpsSensorSecondary(myFunction));
efiPrintf("Opened %f %f", primaryMax, secondaryMax);
// Let it return
motor->set(0);
chThdSleepMilliseconds(200);
// Now grab closed
motor->set(-0.5f);
chThdSleepMilliseconds(1000);
float primaryMin = Sensor::getRaw(functionToTpsSensorPrimary(myFunction));
float secondaryMin = Sensor::getRaw(functionToTpsSensorSecondary(myFunction));
// Finally disable and reset state
motor->disable("autotune");
// Check that the calibrate actually moved the throttle
if (std::abs(primaryMax - primaryMin) < 0.5f) {
firmwareError(ObdCode::OBD_TPS_Configuration, "Auto calibrate failed, check your wiring!\r\nClosed voltage: %.1fv Open voltage: %.1fv", primaryMin, primaryMax);
TBase::m_isAutocal = false;
return;
}
// Write out the learned values to TS, waiting briefly after setting each to let TS grab it
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMax(myFunction);
engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(primaryMax);
chThdSleepMilliseconds(500);
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMin(myFunction);
engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(primaryMin);
chThdSleepMilliseconds(500);
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMax(myFunction);
engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(secondaryMax);
chThdSleepMilliseconds(500);
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMin(myFunction);
engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(secondaryMin);
chThdSleepMilliseconds(500);
engine->outputChannels.calibrationMode = (uint8_t)TsCalMode::None;
TBase::m_isAutocal = false;
return;
}
#endif /* EFI_TUNER_STUDIO */
TBase::update();
}
};
// real implementation (we mock for some unit tests)
static EtbImpl etb1;
static EtbImpl etb2(throttle2TrimTable);
static_assert(ETB_COUNT == 2);
static EtbController* etbControllers[] = { &etb1, &etb2 };
void blinkEtbErrorCodes(bool blinkPhase) {
for (int i = 0;ietbErrorCode;
if (etbErrorCode && engine->etbAutoTune) {
etbErrorCode = (int8_t)TpsState::AutoTune;
}
etbControllers[i]->etbErrorCodeBlinker = blinkPhase ? 0 : etbErrorCode;
}
}
#if !EFI_UNIT_TEST
struct DcThread final : public PeriodicController<512> {
DcThread() : PeriodicController("DC", PRIO_ETB, ETB_LOOP_FREQUENCY) {}
void PeriodicTask(efitick_t) override {
// Simply update all controllers
for (int i = 0 ; i < ETB_COUNT; i++) {
auto controller = engine->etbControllers[i];
assertNotNullVoid(controller);
etbControllers[i]->update();
}
}
};
static DcThread dcThread CCM_OPTIONAL;
#endif // !EFI_UNIT_TEST
void etbPidReset() {
for (int i = 0 ; i < ETB_COUNT; i++) {
if (auto controller = engine->etbControllers[i]) {
assertNotNullVoid(controller);
controller->reset();
}
}
}
void etbAutocal(size_t throttleIndex) {
if (throttleIndex >= ETB_COUNT) {
return;
}
if (auto etb = engine->etbControllers[throttleIndex]) {
assertNotNullVoid(etb);
etb->autoCalibrateTps();
// todo fix root cause! work-around: make sure not to write bad tune since that would brick requestBurn();
}
}
/**
* This specific throttle has default position of about 7% open
*/
static const float boschBiasBins[] = {
0, 1, 5, 7, 14, 65, 66, 100
};
static const float boschBiasValues[] = {
-15, -15, -10, 0, 19, 20, 26, 28
};
void setBoschVAGETB() {
engineConfiguration->tpsMin = 890; // convert 12to10 bit (ADC/4)
engineConfiguration->tpsMax = 70; // convert 12to10 bit (ADC/4)
engineConfiguration->tps1SecondaryMin = 102;
engineConfiguration->tps1SecondaryMax = 891;
engineConfiguration->etb.pFactor = 5.12;
engineConfiguration->etb.iFactor = 47;
engineConfiguration->etb.dFactor = 0.088;
engineConfiguration->etb.offset = 0;
}
void setBoschVNH2SP30Curve() {
copyArray(config->etbBiasBins, boschBiasBins);
copyArray(config->etbBiasValues, boschBiasValues);
}
void setDefaultEtbParameters() {
engineConfiguration->etbIdleThrottleRange = 15;
setLinearCurve(config->pedalToTpsPedalBins, /*from*/0, /*to*/100, 1);
setRpmTableBin(config->pedalToTpsRpmBins);
for (int pedalIndex = 0;pedalIndexpedalToTpsTable[pedalIndex][rpmIndex] = config->pedalToTpsPedalBins[pedalIndex];
}
}
// Default is to run each throttle off its respective hbridge
engineConfiguration->etbFunctions[0] = DC_Throttle1;
engineConfiguration->etbFunctions[1] = DC_Throttle2;
engineConfiguration->etbFreq = DEFAULT_ETB_PWM_FREQUENCY;
// voltage, not ADC like with TPS
setPPSCalibration(0, 5, 5, 0);
engineConfiguration->etb = {
1, // Kp
10, // Ki
0.05, // Kd
0, // offset
0, // Update rate, unused
-100, 100 // min/max
};
engineConfiguration->etb_iTermMin = -30;
engineConfiguration->etb_iTermMax = 30;
engineConfiguration->etbJamDetectThreshold = 10;
engineConfiguration->etbJamTimeout = 1;
}
void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration) {
for (int i = 0; i < ETB_COUNT; i++) {
etbControllers[i]->onConfigurationChange(&previousConfiguration->etb);
}
}
static const float defaultBiasBins[] = {
0, 1, 2, 4, 7, 98, 99, 100
};
static const float defaultBiasValues[] = {
-20, -18, -17, 0, 20, 21, 22, 25
};
void setDefaultEtbBiasCurve() {
copyArray(config->etbBiasBins, defaultBiasBins);
copyArray(config->etbBiasValues, defaultBiasValues);
}
void unregisterEtbPins() {
// todo: we probably need an implementation here?!
}
static pid_s* getPidForDcFunction(dc_function_e function) {
switch (function) {
case DC_Wastegate: return &engineConfiguration->etbWastegatePid;
default: return &engineConfiguration->etb;
}
}
PUBLIC_API_WEAK ValueProvider3D* pedal2TpsProvider() {
return &pedal2tpsMap;
}
void doInitElectronicThrottle() {
bool hasPedal = Sensor::hasSensor(SensorType::AcceleratorPedalPrimary);
bool anyEtbConfigured = false;
// todo: technical debt: we still have DC motor code initialization in ETB-specific file while DC motors are used not just as ETB
// like DC motor wastegate code flow should probably NOT go through electronic_throttle.cpp right?
// todo: rename etbFunctions to something-without-etb for same reason?
for (int i = 0 ; i < ETB_COUNT; i++) {
auto func = engineConfiguration->etbFunctions[i];
if (func == DC_None) {
// do not touch HW pins if function not selected, this way Lua can use DC motor hardware pins directly
continue;
}
auto motor = initDcMotor("ETB disable",
engineConfiguration->etbIo[i], i, engineConfiguration->etb_use_two_wires);
auto controller = engine->etbControllers[i];
criticalAssertVoid(controller != nullptr, "null ETB");
auto pid = getPidForDcFunction(func);
bool dcConfigured = controller->init(func, motor, pid, pedal2TpsProvider());
bool etbConfigured = dcConfigured && controller->isEtbMode();
anyEtbConfigured |= etbConfigured;
}
if (!anyEtbConfigured) {
// It's not valid to have a PPS without any ETBs - check that at least one ETB was enabled along with the pedal
if (hasPedal) {
criticalError("A pedal position sensor was configured, but no electronic throttles are configured.");
}
}
#if 0 && ! EFI_UNIT_TEST
percent_t startupThrottlePosition = getTPS();
if (std::abs(startupThrottlePosition - engineConfiguration->etbNeutralPosition) > STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD) {
/**
* Unexpected electronic throttle start-up position is worth a critical error
*/
firmwareError(ObdCode::OBD_Throttle_Actuator_Control_Range_Performance_Bank_1, "startup ETB position %.2f not %d",
startupThrottlePosition,
engineConfiguration->etbNeutralPosition);
startupPositionError = true;
}
#endif /* EFI_UNIT_TEST */
#if !EFI_UNIT_TEST
static bool started = false;
if (started == false) {
dcThread.start();
started = true;
}
#endif
}
void initElectronicThrottle() {
if (hasFirmwareError()) {
return;
}
for (int i = 0; i < ETB_COUNT; i++) {
engine->etbControllers[i] = etbControllers[i];
}
#if EFI_PROD_CODE
addConsoleAction("etbautocal", [](){
efiPrintf("etbAutocal invoked");
etbAutocal(0);
});
addConsoleAction("etbinfo", [](){
efiPrintf("etbAutoTune=%d", engine->etbAutoTune);
efiPrintf("TPS=%.2f", Sensor::getOrZero(SensorType::Tps1));
efiPrintf("ETB1 duty=%.2f",
(float)engine->outputChannels.etb1DutyCycle);
efiPrintf("ETB freq=%d",
engineConfiguration->etbFreq);
for (int i = 0; i < ETB_COUNT; i++) {
efiPrintf("ETB%d", i);
efiPrintf(" dir1=%s", hwPortname(engineConfiguration->etbIo[i].directionPin1));
efiPrintf(" dir2=%s", hwPortname(engineConfiguration->etbIo[i].directionPin2));
efiPrintf(" control=%s", hwPortname(engineConfiguration->etbIo[i].controlPin));
efiPrintf(" disable=%s", hwPortname(engineConfiguration->etbIo[i].disablePin));
showDcMotorInfo(i);
}
});
#endif /* EFI_PROD_CODE */
pedal2tpsMap.initTable(config->pedalToTpsTable, config->pedalToTpsRpmBins, config->pedalToTpsPedalBins);
throttle2TrimTable.initTable(config->throttle2TrimTable, config->throttle2TrimRpmBins, config->throttle2TrimTpsBins);
tcEtbDropTable.initTable(engineConfiguration->tractionControlEtbDrop, engineConfiguration->tractionControlSlipBins, engineConfiguration->tractionControlSpeedBins);
doInitElectronicThrottle();
}
void setEtbIdlePosition(percent_t pos) {
for (int i = 0; i < ETB_COUNT; i++) {
if (auto etb = engine->etbControllers[i]) {
assertNotNullVoid(etb);
etb->setIdlePosition(pos);
}
}
}
void setEtbWastegatePosition(percent_t pos) {
for (int i = 0; i < ETB_COUNT; i++) {
if (auto etb = engine->etbControllers[i]) {
assertNotNullVoid(etb);
etb->setWastegatePosition(pos);
}
}
}
void setEtbLuaAdjustment(percent_t pos) {
for (int i = 0; i < ETB_COUNT; i++) {
if (auto etb = engine->etbControllers[i]) {
assertNotNullVoid(etb);
etb->setLuaAdjustment(pos);
}
}
}
void setToyota89281_33010_pedal_position_sensor() {
setPPSCalibration(0, 4.1, 0.73, 4.9);
}
void setHitachiEtbCalibration() {
setToyota89281_33010_pedal_position_sensor();
setHitachiEtbBiasBins();
engineConfiguration->etb.pFactor = 2.7999;
engineConfiguration->etb.iFactor = 25.5;
engineConfiguration->etb.dFactor = 0.053;
engineConfiguration->etb.offset = 0.0;
engineConfiguration->etb.periodMs = 5.0;
engineConfiguration->etb.minValue = -100.0;
engineConfiguration->etb.maxValue = 100.0;
// Nissan 60mm throttle
engineConfiguration->tpsMin = engineConfiguration->tps2Min = 113;
engineConfiguration->tpsMax = engineConfiguration->tps2Max = 846;
engineConfiguration->tps1SecondaryMin = engineConfiguration->tps2SecondaryMin = 897;
engineConfiguration->tps1SecondaryMax = engineConfiguration->tps2SecondaryMax = 161;
}
void setProteusHitachiEtbDefaults() {
#if HW_PROTEUS
setHitachiEtbCalibration();
// EFI_ADC_12: "Analog Volt 3"
engineConfiguration->tps1_2AdcChannel = PROTEUS_IN_TPS1_2;
// EFI_ADC_13: "Analog Volt 4"
engineConfiguration->tps2_1AdcChannel = PROTEUS_IN_TPS2_1;
// EFI_ADC_0: "Analog Volt 5"
engineConfiguration->tps2_2AdcChannel = PROTEUS_IN_ANALOG_VOLT_5;
setPPSInputs(PROTEUS_IN_ANALOG_VOLT_6, PROTEUS_IN_PPS2);
#endif // HW_PROTEUS
}
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
template<>
const electronic_throttle_s* getLiveData(size_t idx) {
#if EFI_ELECTRONIC_THROTTLE_BODY
if (idx >= efi::size(etbControllers)) {
return nullptr;
}
return etbControllers[idx];
#else
return nullptr;
#endif
}