/** * @file trigger_decoder.cpp * * @date Dec 24, 2013 * @author Andrey Belomutskiy, (c) 2012-2017 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "main.h" #if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__) #include "obd_error_codes.h" #include "trigger_decoder.h" #include "cyclic_buffer.h" #include "trigger_mazda.h" #include "trigger_chrysler.h" #include "trigger_gm.h" #include "trigger_bmw.h" #include "trigger_mitsubishi.h" #include "trigger_subaru.h" #include "trigger_nissan.h" #include "trigger_toyota.h" #include "trigger_rover.h" #include "trigger_honda.h" #include "trigger_structure.h" #include "efiGpio.h" #include "engine.h" #include "engine_math.h" #include "trigger_central.h" #include "trigger_simulator.h" #include "trigger_universal.h" #if EFI_SENSOR_CHART || defined(__DOXYGEN__) #include "sensor_chart.h" #endif EXTERN_ENGINE ; static cyclic_buffer errorDetection; static bool isInitializingTrigger = false; // #286 miata NA config - sync error on startup #if ! EFI_PROD_CODE || defined(__DOXYGEN__) bool printTriggerDebug = false; float actualSynchGap; #endif /* ! EFI_PROD_CODE */ static Logging * logger; efitick_t lastDecodingErrorTime = US2NT(-10000000LL); // the boolean flag is a performance optimization so that complex comparison is avoided if no error bool someSortOfTriggerError = false; /** * @return TRUE is something is wrong with trigger decoding */ bool isTriggerDecoderError(void) { return errorDetection.sum(6) > 4; } bool TriggerState::isValidIndex(DECLARE_ENGINE_PARAMETER_F) { return currentCycle.current_index < TRIGGER_SHAPE(size); } float TriggerState::getTriggerDutyCycle(int index) { float time = prevTotalTime[index]; return 100 * time / prevCycleDuration; } static trigger_wheel_e eventIndex[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 }; static trigger_value_e eventType[6] = { TV_FALL, TV_RISE, TV_FALL, TV_RISE, TV_FALL, TV_RISE }; #define getCurrentGapDuration(nowNt) \ (isFirstEvent ? 0 : (nowNt) - toothed_previous_time) #if EFI_UNIT_TEST || defined(__DOXYGEN__) #define PRINT_INC_INDEX if (printTriggerDebug) {\ printf("nextTriggerEvent index=%d\r\n", currentCycle.current_index); \ } #else #define PRINT_INC_INDEX {} #endif /* EFI_UNIT_TEST */ #define nextTriggerEvent() \ { \ uint32_t prevTime = currentCycle.timeOfPreviousEventNt[triggerWheel]; \ if (prevTime != 0) { \ /* even event - apply the value*/ \ currentCycle.totalTimeNt[triggerWheel] += (nowNt - prevTime); \ currentCycle.timeOfPreviousEventNt[triggerWheel] = 0; \ } else { \ /* odd event - start accumulation */ \ currentCycle.timeOfPreviousEventNt[triggerWheel] = nowNt; \ } \ if (engineConfiguration->useOnlyRisingEdgeForTrigger) {currentCycle.current_index++;} \ currentCycle.current_index++; \ PRINT_INC_INDEX; \ } #define nextRevolution() { \ if (cycleCallback != NULL) { \ cycleCallback(this); \ } \ memcpy(prevTotalTime, currentCycle.totalTimeNt, sizeof(prevTotalTime)); \ prevCycleDuration = nowNt - startOfCycleNt; \ startOfCycleNt = nowNt; \ resetCurrentCycleState(); \ intTotalEventCounter(); \ runningRevolutionCounter++; \ totalEventCountBase += TRIGGER_SHAPE(size); \ } #define considerEventForGap() (!TRIGGER_SHAPE(useOnlyPrimaryForSync) || isPrimary) #define needToSkipRise(type) (!TRIGGER_SHAPE(gapBothDirections)) && ((!TRIGGER_SHAPE(useRiseEdge)) && (type != TV_FALL)) #define needToSkipFall(type) (!TRIGGER_SHAPE(gapBothDirections)) && (( TRIGGER_SHAPE(useRiseEdge)) && (type != TV_RISE)) #define isLessImportant(type) (needToSkipFall(type) || needToSkipRise(type) || (!considerEventForGap()) ) /** * @brief Trigger decoding happens here * This method is invoked every time we have a fall or rise on one of the trigger sensors. * This method changes the state of trigger_state_s data structure according to the trigger event * @param signal type of event which just happened * @param nowNt current time */ void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_S) { efiAssertVoid(signal <= SHAFT_3RD_RISING, "unexpected signal"); trigger_wheel_e triggerWheel = eventIndex[signal]; trigger_value_e type = eventType[signal]; if (!engineConfiguration->useOnlyRisingEdgeForTrigger && curSignal == prevSignal) { orderingErrorCounter++; } prevSignal = curSignal; curSignal = signal; currentCycle.eventCount[triggerWheel]++; efitime_t currentDurationLong = getCurrentGapDuration(nowNt); /** * For performance reasons, we want to work with 32 bit values. If there has been more then * 10 seconds since previous trigger event we do not really care. */ currentDuration = currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong; bool isPrimary = triggerWheel == T_PRIMARY; if (isLessImportant(type)) { #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s isLessImportant %s now=%d index=%d\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal), nowNt, currentCycle.current_index); } #endif /** * For less important events we simply increment the index. */ nextTriggerEvent() ; // if (TRIGGER_SHAPE(gapBothDirections) && considerEventForGap()) { // isFirstEvent = false; // thirdPreviousDuration = durationBeforePrevious; // durationBeforePrevious = toothed_previous_duration; // toothed_previous_duration = currentDuration; // toothed_previous_time = nowNt; // } } else { #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s event %s %d\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal), nowNt); } #endif isFirstEvent = false; // todo: skip a number of signal from the beginning #if EFI_PROD_CODE || defined(__DOXYGEN__) // scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration); // scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration); #else if (printTriggerDebug) { printf("ratio %f: current=%d previous=%d\r\n", 1.0 * currentDuration / toothed_previous_duration, currentDuration, toothed_previous_duration); } #endif bool isSynchronizationPoint; if (TRIGGER_SHAPE(isSynchronizationNeeded)) { // this is getting a little out of hand, any ideas? bool primaryGap = currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom) && currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo); bool secondaryGap = cisnan(TRIGGER_SHAPE(secondSyncRatioFrom)) || (toothed_previous_duration > durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioFrom) && toothed_previous_duration < durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioTo)); bool thirdGap = cisnan(TRIGGER_SHAPE(thirdSyncRatioFrom)) || (durationBeforePrevious > thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioFrom) && durationBeforePrevious < thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioTo)); /** * Here I prefer to have two multiplications instead of one division, that's a micro-optimization */ isSynchronizationPoint = primaryGap && secondaryGap && thirdGap; #if EFI_PROD_CODE || defined(__DOXYGEN__) if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) { #else if (printTriggerDebug) { #endif /* EFI_PROD_CODE */ float gap = 1.0 * currentDuration / toothed_previous_duration; float prevGap = 1.0 * toothed_previous_duration / durationBeforePrevious; float gap3 = 1.0 * durationBeforePrevious / thirdPreviousDuration; #if EFI_PROD_CODE || defined(__DOXYGEN__) scheduleMsg(logger, "%d: gap=%f/%f/%f @ %d while expected %f/%f and %f/%f error=%d", getTimeNowSeconds(), gap, prevGap, gap3, currentCycle.current_index, TRIGGER_SHAPE(syncRatioFrom), TRIGGER_SHAPE(syncRatioTo), TRIGGER_SHAPE(secondSyncRatioFrom), TRIGGER_SHAPE(secondSyncRatioTo), someSortOfTriggerError); #else actualSynchGap = gap; print("current gap %f/%f/%f c=%d prev=%d\r\n", gap, prevGap, gap3, currentDuration, toothed_previous_duration); #endif /* EFI_PROD_CODE */ } } else { /** * We are here in case of a wheel without synchronization - we just need to count events, * synchronization point simply happens once we have the right number of events * * in case of noise the counter could be above the expected number of events, that's why 'more or equals' and not just 'equals' */ #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("sync=%d index=%d size=%d\r\n", shaft_is_synchronized, currentCycle.current_index, TRIGGER_SHAPE(size)); } #endif int endOfCycleIndex = TRIGGER_SHAPE(size) - (engineConfiguration->useOnlyRisingEdgeForTrigger ? 2 : 1); isSynchronizationPoint = !shaft_is_synchronized || (currentCycle.current_index >= endOfCycleIndex); #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("isSynchronizationPoint=%d index=%d size=%d\r\n", isSynchronizationPoint, currentCycle.current_index, TRIGGER_SHAPE(size)); } #endif } #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s isSynchronizationPoint=%d index=%d %s\r\n", getTrigger_type_e(engineConfiguration->trigger.type), isSynchronizationPoint, currentCycle.current_index, getTrigger_event_e(signal)); } #endif if (isSynchronizationPoint) { /** * We can check if things are fine by comparing the number of events in a cycle with the expected number of event. */ bool isDecodingError = currentCycle.eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0]) || currentCycle.eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1]) || currentCycle.eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]); enginePins.triggerDecoderErrorPin.setValue(isDecodingError); if (isDecodingError && !isInitializingTrigger) { warning(CUSTOM_SYNC_COUNT_MISMATCH, "trigger not happy current %d/%d/%d expected %d/%d/%d", currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2], TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2])); lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; totalTriggerErrorCounter++; if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) { #if EFI_PROD_CODE || defined(__DOXYGEN__) scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d", currentCycle.current_index, TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]); #endif /* EFI_PROD_CODE */ } } errorDetection.add(isDecodingError); if (isTriggerDecoderError()) { warning(CUSTOM_OBD_TRG_DECODING, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d", TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]); } shaft_is_synchronized = true; // this call would update duty cycle values nextTriggerEvent() ; nextRevolution(); #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("index=%d %d\r\n", currentCycle.current_index, runningRevolutionCounter); } #endif /* EFI_UNIT_TEST */ } else { nextTriggerEvent() ; } thirdPreviousDuration = durationBeforePrevious; durationBeforePrevious = toothed_previous_duration; toothed_previous_duration = currentDuration; toothed_previous_time = nowNt; } if (!isValidIndex(PASS_ENGINE_PARAMETER_F) && !isInitializingTrigger) { // let's not show a warning if we are just starting to spin if (engine->rpmCalculator.rpmValue != 0) { warning(CUSTOM_SYNC_ERROR, "sync error: index #%d above total size %d", currentCycle.current_index, TRIGGER_SHAPE(size)); lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; } } if (someSortOfTriggerError) { if (getTimeNowNt() - lastDecodingErrorTime > US2NT(US_PER_SECOND_LL)) { someSortOfTriggerError = false; } } if (ENGINE(sensorChartMode) == SC_RPM_ACCEL || ENGINE(sensorChartMode) == SC_DETAILED_RPM) { angle_t currentAngle = TRIGGER_SHAPE(eventAngles[currentCycle.current_index]); // todo: make this '90' depend on cylinder count? angle_t prevAngle = currentAngle - 90; fixAngle(prevAngle, "prevAngle"); // todo: prevIndex should be pre-calculated int prevIndex = TRIGGER_SHAPE(triggerIndexByAngle[(int)prevAngle]); // now let's get precise angle for that event prevAngle = TRIGGER_SHAPE(eventAngles[prevIndex]); // todo: re-implement this as a subclass. we need two instances of // uint32_t time = nowNt - timeOfLastEvent[prevIndex]; angle_t angleDiff = currentAngle - prevAngle; // todo: angle diff should be pre-calculated fixAngle(angleDiff, "angleDiff"); // float r = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time; #if EFI_SENSOR_CHART || defined(__DOXYGEN__) if (boardConfiguration->sensorChartMode == SC_DETAILED_RPM) { // scAddData(currentAngle, r); } else { // scAddData(currentAngle, r / instantRpmValue[prevIndex]); } #endif // instantRpmValue[currentCycle.current_index] = r; // timeOfLastEvent[currentCycle.current_index] = nowNt; } } void configure3_1_cam(TriggerShape *s, operation_mode_e operationMode DECLARE_ENGINE_PARAMETER_S) { s->initialize(FOUR_STROKE_CAM_SENSOR, true); const float crankW = 360 / 3 / 2; trigger_wheel_e crank = T_SECONDARY; s->addEvent2(10, T_PRIMARY, TV_RISE PASS_ENGINE_PARAMETER); s->addEvent2(50, T_PRIMARY, TV_FALL PASS_ENGINE_PARAMETER); float a = 2 * crankW; // #1/3 s->addEvent2(a += crankW, crank, TV_RISE PASS_ENGINE_PARAMETER); s->addEvent2(a += crankW, crank, TV_FALL PASS_ENGINE_PARAMETER); // #2/3 s->addEvent2(a += crankW, crank, TV_RISE PASS_ENGINE_PARAMETER); s->addEvent2(a += crankW, crank, TV_FALL PASS_ENGINE_PARAMETER); // #3/3 a += crankW; a += crankW; // 2nd #1/3 s->addEvent2(a += crankW, crank, TV_RISE PASS_ENGINE_PARAMETER); s->addEvent2(a += crankW, crank, TV_FALL PASS_ENGINE_PARAMETER); // 2nd #2/3 s->addEvent2(a += crankW, crank, TV_RISE PASS_ENGINE_PARAMETER); s->addEvent2(a += crankW, crank, TV_FALL PASS_ENGINE_PARAMETER); s->isSynchronizationNeeded = false; } void configureOnePlusOne(TriggerShape *s, operation_mode_e operationMode DECLARE_ENGINE_PARAMETER_S) { float engineCycle = getEngineCycle(operationMode); s->initialize(FOUR_STROKE_CAM_SENSOR, true); s->addEvent2(180, T_PRIMARY, TV_RISE PASS_ENGINE_PARAMETER); s->addEvent2(360, T_PRIMARY, TV_FALL PASS_ENGINE_PARAMETER); s->addEvent2(540, T_SECONDARY, TV_RISE PASS_ENGINE_PARAMETER); s->addEvent2(720, T_SECONDARY, TV_FALL PASS_ENGINE_PARAMETER); s->isSynchronizationNeeded = false; s->useOnlyPrimaryForSync = true; } void configureOnePlus60_2(TriggerShape *s, operation_mode_e operationMode DECLARE_ENGINE_PARAMETER_S) { s->initialize(FOUR_STROKE_CAM_SENSOR, true); int totalTeethCount = 60; int skippedCount = 2; s->addEvent2(2, T_PRIMARY, TV_RISE PASS_ENGINE_PARAMETER); addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 0, 360, 2, 20 PASS_ENGINE_PARAMETER); s->addEvent2(20, T_PRIMARY, TV_FALL PASS_ENGINE_PARAMETER); addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 0, 360, 20, NO_RIGHT_FILTER PASS_ENGINE_PARAMETER); addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 360, 360, NO_LEFT_FILTER, NO_RIGHT_FILTER PASS_ENGINE_PARAMETER); s->isSynchronizationNeeded = false; s->useOnlyPrimaryForSync = true; } static TriggerState initState CCM_OPTIONAL; /** * External logger is needed because at this point our logger is not yet initialized */ void TriggerShape::initializeTriggerShape(Logging *logger DECLARE_ENGINE_PARAMETER_S) { const trigger_config_s *triggerConfig = &engineConfiguration->trigger; #if EFI_PROD_CODE || defined(__DOXYGEN__) efiAssertVoid(getRemainingStack(chThdSelf()) > 256, "init t"); scheduleMsg(logger, "initializeTriggerShape(%s/%d)", getTrigger_type_e(triggerConfig->type), (int) triggerConfig->type); #endif shapeDefinitionError = false; switch (triggerConfig->type) { case TT_TOOTHED_WHEEL: initializeSkippedToothTriggerShapeExt(this, triggerConfig->customTotalToothCount, triggerConfig->customSkippedToothCount, engineConfiguration->operationMode PASS_ENGINE_PARAMETER); break; case TT_MAZDA_MIATA_NA: initializeMazdaMiataNaShape(this PASS_ENGINE_PARAMETER); break; case TT_MAZDA_MIATA_NB1: initializeMazdaMiataNb1Shape(this PASS_ENGINE_PARAMETER); break; case TT_MAZDA_MIATA_VVT_TEST: initializeMazdaMiataVVtTestShape(this PASS_ENGINE_PARAMETER); break; case TT_MIATA_VVT: initializeMazdaMiataNb2Crank(this PASS_ENGINE_PARAMETER); break; case TT_DODGE_NEON_1995: configureNeon1995TriggerShape(this PASS_ENGINE_PARAMETER); break; case TT_DODGE_STRATUS: configureDodgeStratusTriggerShape(this PASS_ENGINE_PARAMETER); break; case TT_DODGE_NEON_2003_CAM: configureNeon2003TriggerShapeCam(this PASS_ENGINE_PARAMETER); break; case TT_DODGE_NEON_2003_CRANK: configureNeon2003TriggerShapeCam(this PASS_ENGINE_PARAMETER); // configureNeon2003TriggerShapeCrank(triggerShape PASS_ENGINE_PARAMETER); break; case TT_FORD_ASPIRE: configureFordAspireTriggerShape(this PASS_ENGINE_PARAMETER); break; case TT_GM_7X: configureGmTriggerShape(this PASS_ENGINE_PARAMETER); break; case TT_MAZDA_DOHC_1_4: configureMazdaProtegeLx(this PASS_ENGINE_PARAMETER); break; case TT_ONE_PLUS_ONE: configureOnePlusOne(this, engineConfiguration->operationMode PASS_ENGINE_PARAMETER); break; case TT_3_1_CAM: configure3_1_cam(this, engineConfiguration->operationMode PASS_ENGINE_PARAMETER); break; case TT_ONE_PLUS_TOOTHED_WHEEL_60_2: configureOnePlus60_2(this, engineConfiguration->operationMode PASS_ENGINE_PARAMETER); break; case TT_ONE: setToothedWheelConfiguration(this, 1, 0, engineConfiguration->operationMode PASS_ENGINE_PARAMETER); break; case TT_MAZDA_SOHC_4: configureMazdaProtegeSOHC(this PASS_ENGINE_PARAMETER); break; case TT_MINI_COOPER_R50: configureMiniCooperTriggerShape(this PASS_ENGINE_PARAMETER); break; case TT_TOOTHED_WHEEL_60_2: setToothedWheelConfiguration(this, 60, 2, engineConfiguration->operationMode PASS_ENGINE_PARAMETER); break; case TT_60_2_VW: setVwConfiguration(this PASS_ENGINE_PARAMETER); break; case TT_TOOTHED_WHEEL_36_1: setToothedWheelConfiguration(this, 36, 1, engineConfiguration->operationMode PASS_ENGINE_PARAMETER); break; case TT_HONDA_4_24_1: configureHonda_1_4_24(this, true, true, T_CHANNEL_3, T_PRIMARY, 0 PASS_ENGINE_PARAMETER); break; case TT_HONDA_4_24: configureHonda_1_4_24(this, false, true, T_NONE, T_PRIMARY, 0 PASS_ENGINE_PARAMETER); break; case TT_HONDA_1_24: configureHonda_1_4_24(this, true, false, T_PRIMARY, T_NONE, 10 PASS_ENGINE_PARAMETER); break; case TT_HONDA_ACCORD_1_24_SHIFTED: configureHondaAccordShifted(this PASS_ENGINE_PARAMETER); break; case TT_HONDA_1_4_24: configureHondaAccordCDDip(this PASS_ENGINE_PARAMETER); break; case TT_HONDA_CBR_600: configureHondaCbr600(this PASS_ENGINE_PARAMETER); break; case TT_HONDA_CBR_600_CUSTOM: configureHondaCbr600custom(this PASS_ENGINE_PARAMETER); break; case TT_MITSUBISHI: initializeMitsubishi4g18(this PASS_ENGINE_PARAMETER); break; case TT_DODGE_RAM: initDodgeRam(this PASS_ENGINE_PARAMETER); break; case TT_JEEP_18_2_2_2: initJeep18_2_2_2(this PASS_ENGINE_PARAMETER); break; case TT_SUBARU_7_6: initializeSubaru7_6(this PASS_ENGINE_PARAMETER); break; case TT_36_2_2_2: initialize36_2_2_2(this PASS_ENGINE_PARAMETER); break; case TT_2JZ_3_34: initialize2jzGE3_34(this PASS_ENGINE_PARAMETER); break; case TT_2JZ_1_12: initialize2jzGE1_12(this PASS_ENGINE_PARAMETER); break; case TT_NISSAN_SR20VE: initializeNissanSR20VE(this PASS_ENGINE_PARAMETER); break; case TT_ROVER_K: initializeRoverK(this PASS_ENGINE_PARAMETER); break; case TT_GM_LS_24: initGmLS24(this PASS_ENGINE_PARAMETER); break; default: firmwareError(CUSTOM_ERR_NO_SHAPE, "initializeTriggerShape() not implemented: %d", triggerConfig->type); return; } wave.checkSwitchTimes(getSize()); /** * this instance is used only to initialize 'this' TriggerShape instance * #192 BUG real hardware trigger events could be coming even while we are initializing trigger */ initState.reset(); calculateTriggerSynchPoint(&initState PASS_ENGINE_PARAMETER); } static void onFindIndex(TriggerState *state) { for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { // todo: that's not the best place for this intermediate data storage, fix it! state->expectedTotalTime[i] = state->currentCycle.totalTimeNt[i]; } } /** * Trigger shape is defined in a way which is convenient for trigger shape definition * On the other hand, trigger decoder indexing begins from synchronization event. * * This function finds the index of synchronization event within TriggerShape */ uint32_t findTriggerZeroEventIndex(TriggerState *state, TriggerShape * shape, trigger_config_s const*triggerConfig DECLARE_ENGINE_PARAMETER_S) { #if EFI_PROD_CODE || defined(__DOXYGEN__) efiAssert(getRemainingStack(chThdSelf()) > 128, "findPos", -1); #endif isInitializingTrigger = true; errorDetection.clear(); efiAssert(state != NULL, "NULL state", -1); state->reset(); if (shape->shapeDefinitionError) { return 0; } // todo: should this variable be declared 'static' to reduce stack usage? TriggerStimulatorHelper helper; uint32_t syncIndex = helper.doFindTrigger(shape, triggerConfig, state PASS_ENGINE_PARAMETER); if (syncIndex == EFI_ERROR_CODE) { isInitializingTrigger = false; return syncIndex; } efiAssert(state->getTotalRevolutionCounter() == 1, "totalRevolutionCounter", EFI_ERROR_CODE); #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("findTriggerZeroEventIndex: syncIndex located %d!\r\n", syncIndex); } #endif /* EFI_UNIT_TEST */ /** * Now that we have just located the synch point, we can simulate the whole cycle * in order to calculate expected duty cycle * * todo: add a comment why are we doing '2 * shape->getSize()' here? */ state->cycleCallback = onFindIndex; helper.assertSyncPositionAndSetDutyCycle(syncIndex, state, shape, triggerConfig PASS_ENGINE_PARAMETER); isInitializingTrigger = false; return syncIndex % shape->getSize(); } void initTriggerDecoderLogger(Logging *sharedLogger) { logger = sharedLogger; } void initTriggerDecoder(void) { #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) outputPinRegisterExt2("trg_err", &enginePins.triggerDecoderErrorPin, boardConfiguration->triggerErrorPin, &boardConfiguration->triggerErrorPinMode); #endif } #endif /* EFI_SHAFT_POSITION_INPUT */