/** * @file fuel_math.cpp * @brief Fuel amount calculation logic * * * @date May 27, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . * */ #include "pch.h" #include "airmass.h" #include "alphan_airmass.h" #include "maf_airmass.h" #include "speed_density_airmass.h" #include "fuel_math.h" #include "fuel_computer.h" #include "injector_model.h" #include "speed_density.h" #include "speed_density_base.h" #include "lua_hooks.h" extern fuel_Map3D_t veMap; static mapEstimate_Map3D_t mapEstimationTable; #if EFI_ENGINE_CONTROL float getCrankingFuel3(float baseFuel, uint32_t revolutionCounterSinceStart) { float baseCrankingFuel; if (engineConfiguration->useRunningMathForCranking) { baseCrankingFuel = baseFuel; } else { // parameter is in milligrams, convert to grams baseCrankingFuel = engineConfiguration->cranking.baseFuel * 0.001f; } // Cranking fuel changes over time engine->engineState.crankingFuel.durationCoefficient = interpolate2d(revolutionCounterSinceStart, config->crankingCycleBins, config->crankingCycleCoef); /** * Cranking fuel is different depending on engine coolant temperature * If the sensor is failed, use 20 deg C */ auto clt = Sensor::get(SensorType::Clt).value_or(20); auto e0Mult = interpolate2d(clt, config->crankingFuelBins, config->crankingFuelCoef); bool alreadyWarned = false; if (e0Mult <= 0.1f) { warning(ObdCode::CUSTOM_ERR_ZERO_E0_MULT, "zero e0 multiplier"); alreadyWarned = true; } if (engineConfiguration->flexCranking && Sensor::hasSensor(SensorType::FuelEthanolPercent)) { auto e85Mult = interpolate2d(clt, config->crankingFuelBins, config->crankingFuelCoefE100); if (e85Mult <= 0.1f) { warning(ObdCode::CUSTOM_ERR_ZERO_E85_MULT, "zero e85 multiplier"); alreadyWarned = true; } // If failed flex sensor, default to 50% E auto flex = Sensor::get(SensorType::FuelEthanolPercent).value_or(50); engine->engineState.crankingFuel.coolantTemperatureCoefficient = interpolateClamped( 0, e0Mult, 85, e85Mult, flex ); } else { engine->engineState.crankingFuel.coolantTemperatureCoefficient = e0Mult; } auto tps = Sensor::get(SensorType::DriverThrottleIntent); engine->engineState.crankingFuel.tpsCoefficient = tps.Valid ? interpolate2d(tps.Value, config->crankingTpsBins, config->crankingTpsCoef) : 1; // in case of failed TPS, don't correct. floatms_t crankingFuel = baseCrankingFuel * engine->engineState.crankingFuel.durationCoefficient * engine->engineState.crankingFuel.coolantTemperatureCoefficient * engine->engineState.crankingFuel.tpsCoefficient; engine->engineState.crankingFuel.fuel = crankingFuel * 1000; // don't re-warn for zero fuel when we already warned for a more specific problem if (!alreadyWarned && crankingFuel <= 0) { warning(ObdCode::CUSTOM_ERR_ZERO_CRANKING_FUEL, "Cranking fuel value %f", crankingFuel); } return crankingFuel; } float getRunningFuel(float baseFuel) { ScopePerf perf(PE::GetRunningFuel); float iatCorrection = engine->fuelComputer.running.intakeTemperatureCoefficient; float cltCorrection = engine->fuelComputer.running.coolantTemperatureCoefficient; float postCrankingFuelCorrection = engine->fuelComputer.running.postCrankingFuelCorrection; float baroCorrection = engine->engineState.baroCorrection; efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(iatCorrection), "NaN iatCorrection", 0); efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(cltCorrection), "NaN cltCorrection", 0); efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(postCrankingFuelCorrection), "NaN postCrankingFuelCorrection", 0); float correction = baroCorrection * iatCorrection * cltCorrection * postCrankingFuelCorrection; #if EFI_ANTILAG_SYSTEM correction *= (1 + engine->antilagController.fuelALSCorrection / 100); #endif /* EFI_ANTILAG_SYSTEM */ #if EFI_LAUNCH_CONTROL correction *= engine->launchController.getFuelCoefficient(); #endif correction *= getLimpManager()->getLimitingFuelCorrection(); float runningFuel = baseFuel * correction; efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(runningFuel), "NaN runningFuel", 0); // Publish output state engine->fuelComputer.running.baseFuel = baseFuel * 1000; engine->fuelComputer.totalFuelCorrection = correction; engine->fuelComputer.running.fuel = runningFuel * 1000; return runningFuel; } static SpeedDensityAirmass sdAirmass(veMap, mapEstimationTable); static MafAirmass mafAirmass(veMap); static AlphaNAirmass alphaNAirmass(veMap); AirmassModelBase* getAirmassModel(engine_load_mode_e mode) { switch (mode) { case LM_SPEED_DENSITY: return &sdAirmass; case LM_REAL_MAF: return &mafAirmass; case LM_ALPHA_N: return &alphaNAirmass; #if EFI_LUA case LM_LUA: return &(getLuaAirmassModel()); #endif #if EFI_UNIT_TEST case LM_MOCK: return engine->mockAirmassModel; #endif default: firmwareError(ObdCode::CUSTOM_ERR_ASSERT, "Invalid airmass mode %d", engineConfiguration->fuelAlgorithm); return nullptr; } } float getMaxAirflowAtMap(float map) { return sdAirmass.getAirflow(Sensor::getOrZero(SensorType::Rpm), map, false); } // Per-cylinder base fuel mass static float getBaseFuelMass(int rpm) { ScopePerf perf(PE::GetBaseFuel); // airmass modes - get airmass first, then convert to fuel auto model = getAirmassModel(engineConfiguration->fuelAlgorithm); efiAssert(ObdCode::CUSTOM_ERR_ASSERT, model != nullptr, "Invalid airmass mode", 0.0f); auto airmass = model->getAirmass(rpm, true); // Plop some state for others to read float normalizedCylinderFilling = 100 * airmass.CylinderAirmass / getStandardAirCharge(); engine->fuelComputer.sdAirMassInOneCylinder = airmass.CylinderAirmass; engine->fuelComputer.normalizedCylinderFilling = normalizedCylinderFilling; engine->engineState.fuelingLoad = airmass.EngineLoadPercent; engine->engineState.ignitionLoad = engine->fuelComputer.getLoadOverride(airmass.EngineLoadPercent, engineConfiguration->ignOverrideMode); auto gramPerCycle = airmass.CylinderAirmass * engineConfiguration->cylindersCount; auto gramPerMs = rpm == 0 ? 0 : gramPerCycle / getEngineCycleDuration(rpm); // convert g/s -> kg/h engine->engineState.airflowEstimate = gramPerMs * 3600000 /* milliseconds per hour */ / 1000 /* grams per kg */; float baseFuelMass = engine->fuelComputer.getCycleFuel(airmass.CylinderAirmass, rpm, airmass.EngineLoadPercent); // Fudge it by the global correction factor baseFuelMass *= engineConfiguration->globalFuelCorrection; engine->engineState.baseFuel = baseFuelMass; if (cisnan(baseFuelMass)) { // todo: we should not have this here but https://github.com/rusefi/rusefi/issues/1690 return 0; } return baseFuelMass; } angle_t getInjectionOffset(float rpm, float load) { if (cisnan(rpm)) { return 0; // error already reported } if (cisnan(load)) { return 0; // error already reported } angle_t value = interpolate3d( config->injectionPhase, config->injPhaseLoadBins, load, config->injPhaseRpmBins, rpm ); if (cisnan(value)) { // we could be here while resetting configuration for example // huh? what? when do we have RPM while resetting configuration? is that CI edge case? shall we fix CI? warning(ObdCode::CUSTOM_ERR_6569, "phase map not ready"); return 0; } angle_t result = value; wrapAngle(result, "inj offset#2", ObdCode::CUSTOM_ERR_6553); return result; } /** * Number of injections using each injector per engine cycle * @see getNumberOfSparks */ int getNumberOfInjections(injection_mode_e mode) { switch (mode) { case IM_SIMULTANEOUS: case IM_SINGLE_POINT: return engineConfiguration->cylindersCount; case IM_BATCH: return 2; case IM_SEQUENTIAL: return 1; default: firmwareError(ObdCode::CUSTOM_ERR_INVALID_INJECTION_MODE, "Unexpected injection_mode_e %d", mode); return 1; } } float getInjectionModeDurationMultiplier() { injection_mode_e mode = getCurrentInjectionMode(); switch (mode) { case IM_SIMULTANEOUS: { auto cylCount = engineConfiguration->cylindersCount; if (cylCount == 0) { // we can end up here during configuration reset return 0; } return 1.0f / cylCount; } case IM_SEQUENTIAL: case IM_SINGLE_POINT: return 1; case IM_BATCH: return 0.5f; default: firmwareError(ObdCode::CUSTOM_ERR_INVALID_INJECTION_MODE, "Unexpected injection_mode_e %d", mode); return 0; } } percent_t getInjectorDutyCycle(int rpm) { floatms_t totalInjectiorAmountPerCycle = engine->engineState.injectionDuration * getNumberOfInjections(engineConfiguration->injectionMode); floatms_t engineCycleDuration = getEngineCycleDuration(rpm); return 100 * totalInjectiorAmountPerCycle / engineCycleDuration; } static float getCycleFuelMass(bool isCranking, float baseFuelMass) { if (isCranking) { return getCrankingFuel(baseFuelMass); } else { return getRunningFuel(baseFuelMass); } } /** * @returns Mass of each individual fuel injection, in grams * in case of single point injection mode the amount of fuel into all cylinders, otherwise the amount for one cylinder */ float getInjectionMass(int rpm) { ScopePerf perf(PE::GetInjectionDuration); #if EFI_SHAFT_POSITION_INPUT // Always update base fuel - some cranking modes use it float baseFuelMass = getBaseFuelMass(rpm); bool isCranking = engine->rpmCalculator.isCranking(); float cycleFuelMass = getCycleFuelMass(isCranking, baseFuelMass); efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(cycleFuelMass), "NaN cycleFuelMass", 0); if (engine->module()->cutFuel()) { // If decel fuel cut, zero out fuel cycleFuelMass = 0; } float durationMultiplier = getInjectionModeDurationMultiplier(); float injectionFuelMass = cycleFuelMass * durationMultiplier; // Prepare injector flow rate & deadtime engine->module()->prepare(); floatms_t tpsAccelEnrich = engine->tpsAccelEnrichment.getTpsEnrichment(); efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(tpsAccelEnrich), "NaN tpsAccelEnrich", 0); engine->engineState.tpsAccelEnrich = tpsAccelEnrich; // For legacy reasons, the TPS accel table is in units of milliseconds, so we have to convert BACK to mass float tpsAccelPerInjection = durationMultiplier * tpsAccelEnrich; float tpsFuelMass = engine->module()->getFuelMassForDuration(tpsAccelPerInjection); return injectionFuelMass + tpsFuelMass; #else return 0; #endif } /** * @brief Initialize fuel map data structure * @note this method has nothing to do with fuel map VALUES - it's job * is to prepare the fuel map data structure for 3d interpolation */ void initFuelMap() { mapEstimationTable.init(config->mapEstimateTable, config->mapEstimateTpsBins, config->mapEstimateRpmBins); } /** * @brief Engine warm-up fuel correction. */ float getCltFuelCorrection() { const auto clt = Sensor::get(SensorType::Clt); if (!clt) return 1; // this error should be already reported somewhere else, let's just handle it return interpolate2d(clt.Value, config->cltFuelCorrBins, config->cltFuelCorr); } angle_t getCltTimingCorrection() { const auto clt = Sensor::get(SensorType::Clt); if (!clt) return 0; // this error should be already reported somewhere else, let's just handle it return interpolate2d(clt.Value, config->cltTimingBins, config->cltTimingExtra); } float getIatFuelCorrection() { const auto iat = Sensor::get(SensorType::Iat); if (!iat) return 1; // this error should be already reported somewhere else, let's just handle it return interpolate2d(iat.Value, config->iatFuelCorrBins, config->iatFuelCorr); } float getBaroCorrection() { if (Sensor::hasSensor(SensorType::BarometricPressure)) { // Default to 1atm if failed float pressure = Sensor::get(SensorType::BarometricPressure).value_or(101.325f); float correction = interpolate3d( config->baroCorrTable, config->baroCorrPressureBins, pressure, config->baroCorrRpmBins, Sensor::getOrZero(SensorType::Rpm) ); if (cisnan(correction) || correction < 0.01) { warning(ObdCode::OBD_Barometric_Press_Circ_Range_Perf, "Invalid baro correction %f", correction); return 1; } return correction; } else { return 1; } } percent_t getFuelALSCorrection(int rpm) { #if EFI_ANTILAG_SYSTEM if (engine->antilagController.isAntilagCondition) { float throttleIntent = Sensor::getOrZero(SensorType::DriverThrottleIntent); auto AlsFuelAdd = interpolate3d( config->ALSFuelAdjustment, config->alsFuelAdjustmentLoadBins, throttleIntent, config->alsFuelAdjustmentrpmBins, rpm ); return AlsFuelAdd; } else #endif /* EFI_ANTILAG_SYSTEM */ { return 0; } } #if EFI_ENGINE_CONTROL /** * @return Duration of fuel injection while craning */ float getCrankingFuel(float baseFuel) { return getCrankingFuel3(baseFuel, engine->rpmCalculator.getRevolutionCounterSinceStart()); } /** * Standard cylinder air charge - 100% VE at standard temperature, grams per cylinder * * Should we bother caching 'getStandardAirCharge' result or can we afford to run the math every time we calculate fuel? */ float getStandardAirCharge() { float totalDisplacement = engineConfiguration->displacement; float cylDisplacement = totalDisplacement / engineConfiguration->cylindersCount; // Calculation of 100% VE air mass in g/cyl - 1 cylinder filling at 1.204/L // 101.325kpa, 20C return idealGasLaw(cylDisplacement, 101.325f, 273.15f + 20.0f); } float getCylinderFuelTrim(size_t cylinderNumber, int rpm, float fuelLoad) { auto trimPercent = interpolate3d( config->fuelTrims[cylinderNumber].table, config->fuelTrimLoadBins, fuelLoad, config->fuelTrimRpmBins, rpm ); // Convert from percent +- to multiplier // 5% -> 1.05 return (100 + trimPercent) / 100; } #endif #endif