/** * @file idle_thread.cpp * @brief Idle Air Control valve thread. * * This thread looks at current RPM and decides if it should increase or decrease IAC duty cycle. * This file has the hardware & scheduling logic, desired idle level lives separately. * * * @date May 23, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * enable verbose_idle * disable verbose_idle * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . * */ #include "global.h" #if EFI_IDLE_CONTROL #include "engine_configuration.h" #include "rpm_calculator.h" #include "idle_thread.h" #include "idle_hardware.h" #include "engine_math.h" #include "engine.h" #include "periodic_task.h" #include "allsensors.h" #include "sensor.h" #include "dc_motors.h" #if EFI_TUNER_STUDIO #include "stepper.h" #endif EXTERN_ENGINE; // todo: move all static vars to engine->engineState.idle? static bool shouldResetPid = false; // The idea of 'mightResetPid' is to reset PID only once - each time when TPS > idlePidDeactivationTpsThreshold. // The throttle pedal can be pressed for a long time, making the PID data obsolete (thus the reset is required). // We set 'mightResetPid' to true only if PID was actually used (i.e. idlePid.getOutput() was called) to save some CPU resources. // See automaticIdleController(). static bool mightResetPid = false; // This is needed to slowly turn on the PID back after it was reset. static bool wasResetPid = false; // This is used when the PID configuration is changed, to guarantee the reset static bool mustResetPid = false; static efitimeus_t restoreAfterPidResetTimeUs = 0; class PidWithOverrides : public PidIndustrial { public: float getOffset() const override { #if EFI_UNIT_TEST EXPAND_Engine; #endif float result = parameters->offset; #if EFI_FSIO if (engineConfiguration->useFSIO12ForIdleOffset) { return result + ENGINE(fsioState.fsioIdleOffset); } #endif /* EFI_FSIO */ return result; } float getMinValue() const override { #if EFI_UNIT_TEST EXPAND_Engine; #endif float result = parameters->minValue; #if EFI_FSIO if (engineConfiguration->useFSIO13ForIdleMinValue) { return result + ENGINE(fsioState.fsioIdleMinValue); } #endif /* EFI_FSIO */ return result; } }; static PidWithOverrides industrialWithOverrideIdlePid; #if EFI_IDLE_PID_CIC // Use PID with CIC integrator static PidCic idleCicPid; #endif //EFI_IDLE_PID_CIC Pid * getIdlePid(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_IDLE_PID_CIC if (CONFIG(useCicPidForIdle)) { return &idleCicPid; } #endif /* EFI_IDLE_PID_CIC */ return &industrialWithOverrideIdlePid; } float getIdlePidOffset(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getOffset(); } float getIdlePidMinValue(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getMinValue(); } static uint32_t lastCrankingCyclesCounter = 0; static float lastCrankingIacPosition; static iacPidMultiplier_t iacPidMultMap("iacPidMultiplier"); #if ! EFI_UNIT_TEST void idleDebug(const char *msg, percent_t value) { efiPrintf("idle debug: %s%.2f", msg, value); } static void showIdleInfo(DECLARE_ENGINE_PARAMETER_SIGNATURE) { const char * idleModeStr = getIdle_mode_e(engineConfiguration->idleMode); efiPrintf("useStepperIdle=%s useHbridges=%s", boolToString(CONFIG(useStepperIdle)), boolToString(CONFIG(useHbridges))); efiPrintf("idleMode=%s position=%.2f", idleModeStr, getIdlePosition()); if (CONFIG(useStepperIdle)) { if (CONFIG(useHbridges)) { efiPrintf("Coil A:"); efiPrintf(" pin1=%s", hwPortname(CONFIG(stepperDcIo[0].directionPin1))); efiPrintf(" pin2=%s", hwPortname(CONFIG(stepperDcIo[0].directionPin2))); showDcMotorInfo(2); efiPrintf("Coil B:"); efiPrintf(" pin1=%s", hwPortname(CONFIG(stepperDcIo[1].directionPin1))); efiPrintf(" pin2=%s", hwPortname(CONFIG(stepperDcIo[1].directionPin2))); showDcMotorInfo(3); } else { efiPrintf("directionPin=%s reactionTime=%.2f", hwPortname(CONFIG(idle).stepperDirectionPin), engineConfiguration->idleStepperReactionTime); efiPrintf("stepPin=%s steps=%d", hwPortname(CONFIG(idle).stepperStepPin), engineConfiguration->idleStepperTotalSteps); efiPrintf("enablePin=%s/%d", hwPortname(engineConfiguration->stepperEnablePin), engineConfiguration->stepperEnablePinMode); } } else { if (!CONFIG(isDoubleSolenoidIdle)) { efiPrintf("idle valve freq=%d on %s", CONFIG(idle).solenoidFrequency, hwPortname(CONFIG(idle).solenoidPin)); } else { efiPrintf("idle valve freq=%d on %s", CONFIG(idle).solenoidFrequency, hwPortname(CONFIG(idle).solenoidPin)); efiPrintf(" and %s", hwPortname(CONFIG(secondSolenoidPin))); } } if (engineConfiguration->idleMode == IM_AUTO) { getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->showPidStatus("idle"); } } void setIdleMode(idle_mode_e value DECLARE_ENGINE_PARAMETER_SUFFIX) { engineConfiguration->idleMode = value ? IM_AUTO : IM_MANUAL; showIdleInfo(); } percent_t getIdlePosition() { return engine->engineState.idle.currentIdlePosition; } void setManualIdleValvePosition(int positionPercent) { if (positionPercent < 1 || positionPercent > 99) return; efiPrintf("setting idle valve position %d", positionPercent); #if ! EFI_UNIT_TEST showIdleInfo(); #endif /* EFI_UNIT_TEST */ // todo: this is not great that we have to write into configuration here CONFIG(manIdlePosition) = positionPercent; } #endif /* EFI_UNIT_TEST */ void IdleController::init(pid_s* idlePidConfig) { m_timingPid.initPidClass(idlePidConfig); } int IdleController::getTargetRpm(float clt) const { // TODO: bump target rpm based on AC and/or fan(s)? float fsioBump = engine->fsioState.fsioIdleTargetRPMAdjustment; return fsioBump + interpolate2d(clt, CONFIG(cltIdleRpmBins), CONFIG(cltIdleRpm)); } IIdleController::Phase IdleController::determinePhase(int rpm, int targetRpm, SensorResult tps) const { if (!engine->rpmCalculator.isRunning()) { return Phase::Cranking; } if (!tps) { // If the TPS has failed, assume the engine is running return Phase::Running; } // if throttle pressed, we're out of the idle corner if (tps.Value > CONFIG(idlePidDeactivationTpsThreshold)) { return Phase::Running; } // If rpm too high (but throttle not pressed), we're coasting int maximumIdleRpm = targetRpm + CONFIG(idlePidRpmUpperLimit); if (rpm > maximumIdleRpm) { return Phase::Coasting; } // No other conditions met, we are idling! return Phase::Idling; } float IdleController::getCrankingOpenLoop(float clt) const { float mult = CONFIG(overrideCrankingIacSetting) // Override to separate table ? interpolate2d(clt, config->cltCrankingCorrBins, config->cltCrankingCorr) // Otherwise use plain running table : interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr); return CONFIG(crankingIACposition) * mult; } float IdleController::getRunningOpenLoop(float clt, SensorResult tps) const { float running = CONFIG(manIdlePosition) // Base idle position (slider) * interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr); // Now we bump it by the AC/fan amount if necessary running += engine->acSwitchState ? CONFIG(acIdleExtraOffset) : 0; running += enginePins.fanRelay.getLogicValue() ? CONFIG(fan1ExtraIdle) : 0; // TODO: once we have dual fans, enable //running += enginePins.fanRelay2.getLogicValue() ? CONFIG(fan2ExtraIdle) : 0; // Now bump it by the specified amount when the throttle is opened (if configured) // nb: invalid tps will make no change, no explicit check required running += interpolateClamped( 0, 0, CONFIG(idlePidDeactivationTpsThreshold), CONFIG(iacByTpsTaper), tps.value_or(0)); return clampF(0, running, 100); } float IdleController::getOpenLoop(Phase phase, float clt, SensorResult tps) const { float running = getRunningOpenLoop(clt, tps); float cranking = getCrankingOpenLoop(clt); // if we're cranking, nothing more to do. if (phase == Phase::Cranking) { return cranking; } // If coasting (and enabled), use the coasting position table instead of normal open loop // TODO: this should be a table of open loop mult vs. RPM, not vs. clt if (CONFIG(useIacTableForCoasting) && phase == Phase::Coasting) { return interpolate2d(clt, CONFIG(iacCoastingBins), CONFIG(iacCoasting)); } // Interpolate between cranking and running over a short time // This clamps once you fall off the end, so no explicit check for running required auto revsSinceStart = engine->rpmCalculator.getRevolutionCounterSinceStart(); return interpolateClamped(0, cranking, CONFIG(afterCrankingIACtaperDuration), running, revsSinceStart); } float IdleController::getIdleTimingAdjustment(int rpm) { return getIdleTimingAdjustment(rpm, m_lastTargetRpm, m_lastPhase); } float IdleController::getIdleTimingAdjustment(int rpm, int targetRpm, Phase phase) { // if not enabled, do nothing if (!CONFIG(useIdleTimingPidControl)) { return 0; } // If not idling, do nothing if (phase != Phase::Idling) { m_timingPid.reset(); return 0; } if (CONFIG(useInstantRpmForIdle)) { rpm = engine->triggerCentral.triggerState.getInstantRpm(); } // If inside the deadzone, do nothing if (absI(rpm - targetRpm) < CONFIG(idleTimingPidDeadZone)) { m_timingPid.reset(); return 0; } // We're now in the idle mode, and RPM is inside the Timing-PID regulator work zone! return m_timingPid.getOutput(targetRpm, rpm, FAST_CALLBACK_PERIOD_MS / 1000.0f); } static percent_t manualIdleController(float cltCorrection DECLARE_ENGINE_PARAMETER_SUFFIX) { percent_t correctedPosition = cltCorrection * CONFIG(manIdlePosition); return correctedPosition; } /** * idle blip is a development tool: alternator PID research for instance have benefited from a repetitive change of RPM */ static percent_t blipIdlePosition; static efitimeus_t timeToStopBlip = 0; efitimeus_t timeToStopIdleTest = 0; /** * I use this questionable feature to tune acceleration enrichment */ static void blipIdle(int idlePosition, int durationMs) { if (timeToStopBlip != 0) { return; // already in idle blip } blipIdlePosition = idlePosition; timeToStopBlip = getTimeNowUs() + 1000 * durationMs; } static void finishIdleTestIfNeeded() { if (timeToStopIdleTest != 0 && getTimeNowUs() > timeToStopIdleTest) timeToStopIdleTest = 0; } static void undoIdleBlipIfNeeded() { if (timeToStopBlip != 0 && getTimeNowUs() > timeToStopBlip) { timeToStopBlip = 0; } } /** * @return idle valve position percentage for automatic closed loop mode */ float IdleController::getClosedLoop(IIdleController::Phase phase, float tpsPos, int rpm, int targetRpm) { auto idlePid = getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE); if (shouldResetPid) { // we reset only if I-term is negative, because the positive I-term is good - it keeps RPM from dropping too low if (idlePid->getIntegration() <= 0 || mustResetPid) { idlePid->reset(); mustResetPid = false; } // alternatorPidResetCounter++; shouldResetPid = false; wasResetPid = true; } // todo: move this to pid_s one day industrialWithOverrideIdlePid.antiwindupFreq = engineConfiguration->idle_antiwindupFreq; industrialWithOverrideIdlePid.derivativeFilterLoss = engineConfiguration->idle_derivativeFilterLoss; efitimeus_t nowUs = getTimeNowUs(); if (phase != IIdleController::Phase::Idling) { // Don't store old I and D terms if PID doesn't work anymore. // Otherwise they will affect the idle position much later, when the throttle is closed. if (mightResetPid) { mightResetPid = false; shouldResetPid = true; } engine->engineState.idle.idleState = TPS_THRESHOLD; // just leave IAC position as is (but don't return currentIdlePosition - it may already contain additionalAir) return engine->engineState.idle.baseIdlePosition; } // #1553 we need to give FSIO variable offset or minValue a chance bool acToggleJustTouched = (nowUs - engine->acSwitchLastChangeTime) < MS2US(500); // check if within the dead zone if (!acToggleJustTouched && absI(rpm - targetRpm) <= CONFIG(idlePidRpmDeadZone)) { engine->engineState.idle.idleState = RPM_DEAD_ZONE; // current RPM is close enough, no need to change anything return engine->engineState.idle.baseIdlePosition; } // When rpm < targetRpm, there's a risk of dropping RPM too low - and the engine dies out. // So PID reaction should be increased by adding extra percent to PID-error: percent_t errorAmpCoef = 1.0f; if (rpm < targetRpm) errorAmpCoef += (float)CONFIG(pidExtraForLowRpm) / PERCENT_MULT; // if PID was previously reset, we store the time when it turned on back (see errorAmpCoef correction below) if (wasResetPid) { restoreAfterPidResetTimeUs = nowUs; wasResetPid = false; } // increase the errorAmpCoef slowly to restore the process correctly after the PID reset // todo: move restoreAfterPidResetTimeUs to engineState.idle? efitimeus_t timeSincePidResetUs = nowUs - /*engine->engineState.idle.*/restoreAfterPidResetTimeUs; // todo: add 'pidAfterResetDampingPeriodMs' setting errorAmpCoef = interpolateClamped(0, 0, MS2US(/*CONFIG(pidAfterResetDampingPeriodMs)*/1000), errorAmpCoef, timeSincePidResetUs); // If errorAmpCoef > 1.0, then PID thinks that RPM is lower than it is, and controls IAC more aggressively idlePid->setErrorAmplification(errorAmpCoef); percent_t newValue = idlePid->getOutput(targetRpm, rpm, SLOW_CALLBACK_PERIOD_MS / 1000.0f); engine->engineState.idle.idleState = PID_VALUE; // the state of PID has been changed, so we might reset it now, but only when needed (see idlePidDeactivationTpsThreshold) mightResetPid = true; // Apply PID Multiplier if used if (CONFIG(useIacPidMultTable)) { float engineLoad = getFuelingLoad(PASS_ENGINE_PARAMETER_SIGNATURE); float multCoef = iacPidMultMap.getValue(rpm / RPM_1_BYTE_PACKING_MULT, engineLoad); // PID can be completely disabled of multCoef==0, or it just works as usual if multCoef==1 newValue = interpolateClamped(0, engine->engineState.idle.baseIdlePosition, 1.0f, newValue, multCoef); } // Apply PID Deactivation Threshold as a smooth taper for TPS transients. // if tps==0 then PID just works as usual, or we completely disable it if tps>=threshold newValue = interpolateClamped(0.0f, newValue, CONFIG(idlePidDeactivationTpsThreshold), engine->engineState.idle.baseIdlePosition, tpsPos); // Interpolate to the manual position when RPM is close to the upper RPM limit (if idlePidRpmUpperLimit is set). // If RPM increases and the throttle is closed, then we're in coasting mode, and we should smoothly disable auto-pid. // If we just leave IAC at baseIdlePosition (as in case of TPS deactivation threshold), RPM would get stuck. // That's why there's 'useIacTableForCoasting' setting which involves a separate IAC position table for coasting (iacCoasting). // Currently it's user-defined. But eventually we'll use a real calculated and stored IAC position instead. int idlePidLowerRpm = targetRpm + CONFIG(idlePidRpmDeadZone); if (CONFIG(idlePidRpmUpperLimit) > 0) { engine->engineState.idle.idleState = PID_UPPER; const auto [cltValid, clt] = Sensor::get(SensorType::Clt); if (CONFIG(useIacTableForCoasting) && cltValid) { percent_t iacPosForCoasting = interpolate2d(clt, CONFIG(iacCoastingBins), CONFIG(iacCoasting)); newValue = interpolateClamped(idlePidLowerRpm, newValue, idlePidLowerRpm + CONFIG(idlePidRpmUpperLimit), iacPosForCoasting, rpm); } else { // Well, just leave it as is, without PID regulation... newValue = engine->engineState.idle.baseIdlePosition; } } return newValue; } float IdleController::getIdlePosition() { // Simplify hardware CI: we borrow the idle valve controller as a PWM source for various stimulation tasks // The logic in this function is solidly unit tested, so it's not necessary to re-test the particulars on real hardware. #ifdef HARDWARE_CI return CONFIG(manIdlePosition); #endif /* * Here we have idle logic thread - actual stepper movement is implemented in a separate * working thread, * @see stepper.cpp */ getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->iTermMin = engineConfiguration->idlerpmpid_iTermMin; getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->iTermMax = engineConfiguration->idlerpmpid_iTermMax; // On failed sensor, use 0 deg C - should give a safe highish idle float clt = Sensor::get(SensorType::Clt).value_or(0); auto tps = Sensor::get(SensorType::DriverThrottleIntent); float rpm; if (CONFIG(useInstantRpmForIdle)) { rpm = engine->triggerCentral.triggerState.getInstantRpm(); } else { rpm = GET_RPM(); } // Compute the target we're shooting for auto targetRpm = getTargetRpm(clt); m_lastTargetRpm = targetRpm; // Determine what operation phase we're in - idling or not auto phase = determinePhase(rpm, targetRpm, tps); m_lastPhase = phase; engine->engineState.isAutomaticIdle = tps.Valid && engineConfiguration->idleMode == IM_AUTO; if (engineConfiguration->isVerboseIAC && engine->engineState.isAutomaticIdle) { efiPrintf("Idle state %s", getIdle_state_e(engine->engineState.idle.idleState)); getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->showPidStatus("idle"); } finishIdleTestIfNeeded(); undoIdleBlipIfNeeded(); // cltCorrection is used only for cranking or running in manual mode float cltCorrection; // Use separate CLT correction table for cranking if (engineConfiguration->overrideCrankingIacSetting && phase == IIdleController::Phase::Cranking) { cltCorrection = interpolate2d(clt, config->cltCrankingCorrBins, config->cltCrankingCorr); } else { // this value would be ignored if running in AUTO mode // but we need it while cranking in AUTO mode cltCorrection = interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr); } percent_t iacPosition; if (timeToStopBlip != 0) { iacPosition = blipIdlePosition; engine->engineState.idle.baseIdlePosition = iacPosition; engine->engineState.idle.idleState = BLIP; } else if (phase == IIdleController::Phase::Cranking) { // during cranking it's always manual mode, PID would make no sense during cranking iacPosition = clampPercentValue(cltCorrection * engineConfiguration->crankingIACposition); // save cranking position & cycles counter for taper transition lastCrankingIacPosition = iacPosition; lastCrankingCyclesCounter = engine->rpmCalculator.getRevolutionCounterSinceStart(); engine->engineState.idle.baseIdlePosition = iacPosition; } else { if (!tps.Valid || engineConfiguration->idleMode == IM_MANUAL) { // let's re-apply CLT correction iacPosition = manualIdleController(cltCorrection PASS_ENGINE_PARAMETER_SUFFIX); } else { iacPosition = getClosedLoop(phase, tps.Value, rpm, targetRpm); } iacPosition = clampPercentValue(iacPosition); // store 'base' iacPosition without adjustments engine->engineState.idle.baseIdlePosition = iacPosition; float additionalAir = (float)engineConfiguration->iacByTpsTaper; if (tps.Valid) { iacPosition += interpolateClamped(0.0f, 0.0f, CONFIG(idlePidDeactivationTpsThreshold), additionalAir, tps.Value); } // taper transition from cranking to running (uint32_t to float conversion is safe here) if (engineConfiguration->afterCrankingIACtaperDuration > 0) iacPosition = interpolateClamped(lastCrankingCyclesCounter, lastCrankingIacPosition, lastCrankingCyclesCounter + engineConfiguration->afterCrankingIACtaperDuration, iacPosition, engine->rpmCalculator.getRevolutionCounterSinceStart()); } #if EFI_TUNER_STUDIO tsOutputChannels.isIdleClosedLoop = phase == Phase::Idling; tsOutputChannels.isIdleCoasting = phase == Phase::Coasting; if (engineConfiguration->debugMode == DBG_IDLE_CONTROL) { if (engineConfiguration->idleMode == IM_AUTO) { // see also tsOutputChannels->idlePosition getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->postState(&tsOutputChannels, 1000000); tsOutputChannels.debugIntField4 = engine->engineState.idle.idleState; } else { tsOutputChannels.debugFloatField1 = iacPosition; extern StepperMotor iacMotor; tsOutputChannels.debugIntField1 = iacMotor.getTargetPosition(); } } #endif /* EFI_TUNER_STUDIO */ engine->engineState.idle.currentIdlePosition = iacPosition; return iacPosition; } void IdleController::update() { float position = getIdlePosition(); applyIACposition(position PASS_ENGINE_PARAMETER_SUFFIX); } IdleController idleControllerInstance; void updateIdleControl() { idleControllerInstance.update(); } float getIdleTimingAdjustment(int rpm) { return idleControllerInstance.getIdleTimingAdjustment(rpm); } bool isIdling() { return idleControllerInstance.isIdling(); } static void applyPidSettings(DECLARE_ENGINE_PARAMETER_SIGNATURE) { getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->updateFactors(engineConfiguration->idleRpmPid.pFactor, engineConfiguration->idleRpmPid.iFactor, engineConfiguration->idleRpmPid.dFactor); iacPidMultMap.init(CONFIG(iacPidMultTable), CONFIG(iacPidMultLoadBins), CONFIG(iacPidMultRpmBins)); } void setDefaultIdleParameters(DECLARE_CONFIG_PARAMETER_SIGNATURE) { engineConfiguration->idleRpmPid.pFactor = 0.1f; engineConfiguration->idleRpmPid.iFactor = 0.05f; engineConfiguration->idleRpmPid.dFactor = 0.0f; engineConfiguration->idlerpmpid_iTermMin = -20; engineConfiguration->idlerpmpid_iTermMax = 20; // Good starting point is 10 degrees per 100 rpm, aka 0.1 deg/rpm CONFIG(idleTimingPid).pFactor = 0.1f; CONFIG(idleTimingPid).iFactor = 0; CONFIG(idleTimingPid).dFactor = 0; // Allow +- 10 degrees adjustment CONFIG(idleTimingPid).minValue = -10; CONFIG(idleTimingPid).minValue = 10; // Idle region is target + 100 RPM CONFIG(idlePidRpmUpperLimit) = 100; } #if ! EFI_UNIT_TEST void onConfigurationChangeIdleCallback(engine_configuration_s *previousConfiguration) { shouldResetPid = !getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->isSame(&previousConfiguration->idleRpmPid); mustResetPid = shouldResetPid; } void setTargetIdleRpm(int value) { setTargetRpmCurve(value PASS_ENGINE_PARAMETER_SUFFIX); efiPrintf("target idle RPM %d", value); showIdleInfo(); } void setIdleOffset(float value) { engineConfiguration->idleRpmPid.offset = value; showIdleInfo(); } void setIdlePFactor(float value) { engineConfiguration->idleRpmPid.pFactor = value; applyPidSettings(); showIdleInfo(); } void setIdleIFactor(float value) { engineConfiguration->idleRpmPid.iFactor = value; applyPidSettings(); showIdleInfo(); } void setIdleDFactor(float value) { engineConfiguration->idleRpmPid.dFactor = value; applyPidSettings(); showIdleInfo(); } /** * Idle test would activate the solenoid for three seconds */ void startIdleBench(void) { timeToStopIdleTest = getTimeNowUs() + MS2US(3000); // 3 seconds efiPrintf("idle valve bench test"); showIdleInfo(); } #endif /* EFI_UNIT_TEST */ void startIdleThread(DECLARE_ENGINE_PARAMETER_SIGNATURE) { INJECT_ENGINE_REFERENCE(&idleControllerInstance); idleControllerInstance.init(&CONFIG(idleTimingPid)); INJECT_ENGINE_REFERENCE(&industrialWithOverrideIdlePid); ENGINE(idleController) = &idleControllerInstance; getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->initPidClass(&engineConfiguration->idleRpmPid); #if ! EFI_UNIT_TEST // todo: we still have to explicitly init all hardware on start in addition to handling configuration change via // 'applyNewHardwareSettings' todo: maybe unify these two use-cases? initIdleHardware(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_UNIT_TEST */ DISPLAY_STATE(Engine) DISPLAY_TEXT(Idle_State); engine->engineState.idle.DISPLAY_FIELD(idleState) = INIT; DISPLAY_TEXT(EOL); DISPLAY_TEXT(Base_Position); engine->engineState.idle.DISPLAY_FIELD(baseIdlePosition) = -100.0f; DISPLAY_TEXT(Position_with_Adjustments); engine->engineState.idle.DISPLAY_FIELD(currentIdlePosition) = -100.0f; DISPLAY_TEXT(EOL); DISPLAY_TEXT(EOL); DISPLAY_SENSOR(TPS); DISPLAY_TEXT(EOL); DISPLAY_TEXT(Throttle_Up_State); DISPLAY(DISPLAY_FIELD(throttlePedalUpState)); DISPLAY(DISPLAY_CONFIG(throttlePedalUpPin)); DISPLAY_TEXT(eol); DISPLAY(DISPLAY_IF(isAutomaticIdle)) DISPLAY_STATE(idle_pid) DISPLAY_TEXT(Output); DISPLAY(DISPLAY_FIELD(output)); DISPLAY_TEXT(iTerm); DISPLAY(DISPLAY_FIELD(iTerm)); DISPLAY_TEXT(eol); DISPLAY_TEXT(Settings); DISPLAY(DISPLAY_CONFIG(IDLERPMPID_PFACTOR)); DISPLAY(DISPLAY_CONFIG(IDLERPMPID_IFACTOR)); DISPLAY(DISPLAY_CONFIG(IDLERPMPID_DFACTOR)); DISPLAY(DISPLAY_CONFIG(IDLERPMPID_OFFSET)); DISPLAY_TEXT(eol); DISPLAY_TEXT(ETB_Idle); DISPLAY_STATE(Engine) DISPLAY(DISPLAY_FIELD(etbIdleAddition)); /* DISPLAY_ELSE */ DISPLAY_TEXT(Manual_idle_control); /* DISPLAY_ENDIF */ #if ! EFI_UNIT_TEST // this is neutral/no gear switch input. on Miata it's wired both to clutch pedal and neutral in gearbox // this switch is not used yet if (isBrainPinValid(CONFIG(clutchDownPin))) { efiSetPadMode("clutch down switch", CONFIG(clutchDownPin), getInputMode(CONFIG(clutchDownPinMode))); } if (isBrainPinValid(CONFIG(clutchUpPin))) { efiSetPadMode("clutch up switch", CONFIG(clutchUpPin), getInputMode(CONFIG(clutchUpPinMode))); } if (isBrainPinValid(CONFIG(throttlePedalUpPin))) { efiSetPadMode("throttle pedal up switch", CONFIG(throttlePedalUpPin), getInputMode(CONFIG(throttlePedalUpPinMode))); } if (isBrainPinValid(engineConfiguration->brakePedalPin)) { #if EFI_PROD_CODE efiSetPadMode("brake pedal switch", engineConfiguration->brakePedalPin, getInputMode(engineConfiguration->brakePedalPinMode)); #endif /* EFI_PROD_CODE */ } addConsoleAction("idleinfo", showIdleInfo); addConsoleActionII("blipidle", blipIdle); // split this whole file into manual controller and auto controller? move these commands into the file // which would be dedicated to just auto-controller? addConsoleAction("idlebench", startIdleBench); #endif /* EFI_UNIT_TEST */ applyPidSettings(PASS_ENGINE_PARAMETER_SIGNATURE); } #endif /* EFI_IDLE_CONTROL */