/** * @file at32_can.cpp * @brief Low level common AT32 code * * @date Nov 19, 2023 * @author Andrey Gusakov, (c) 2023 */ #include "pch.h" #if EFI_CAN_SUPPORT // Values below calculated with http://www.bittiming.can-wiki.info/ // Pick ST micro bxCAN #if (STM32_PCLK1 == 144000000) // Clock rate of 144mhz for AT32F435 // These have an 85.7% sample point // CAN_BTR_BRP - Baud Rate Prescaler // CAN_BTR_SJW - Resynchronization Jump Width // CAN_BTR_TS1 - Time Segment 1 // CAN_BTR_TS2 - Time Segment 2 #define CAN_BTR_50 (CAN_BTR_BRP(160 - 1) | CAN_BTR_SJW(18 - 1) | CAN_BTR_TS1(15 - 1) | CAN_BTR_TS2(2 - 1)) #define CAN_BTR_83 (CAN_BTR_BRP(96 - 1) | CAN_BTR_SJW(18 - 1) | CAN_BTR_TS1(15 - 1) | CAN_BTR_TS2(2 - 1)) /* not accurate */ #define CAN_BTR_100 (CAN_BTR_BRP(80 - 1) | CAN_BTR_SJW(18 - 1) | CAN_BTR_TS1(15 - 1) | CAN_BTR_TS2(2 - 1)) #define CAN_BTR_125 (CAN_BTR_BRP(64 - 1) | CAN_BTR_SJW(18 - 1) | CAN_BTR_TS1(15 - 1) | CAN_BTR_TS2(2 - 1)) #define CAN_BTR_250 (CAN_BTR_BRP(32 - 1) | CAN_BTR_SJW(18 - 1) | CAN_BTR_TS1(15 - 1) | CAN_BTR_TS2(2 - 1)) #define CAN_BTR_500 (CAN_BTR_BRP(16 - 1) | CAN_BTR_SJW(18 - 1) | CAN_BTR_TS1(15 - 1) | CAN_BTR_TS2(2 - 1)) #define CAN_BTR_1k0 (CAN_BTR_BRP(8 - 1) | CAN_BTR_SJW(18 - 1) | CAN_BTR_TS1(15 - 1) | CAN_BTR_TS2(2 - 1)) #endif #define STM32FxMCR (CAN_MCR_ABOM | CAN_MCR_AWUM | CAN_MCR_TXFP) static const CANConfig canConfig50 = { .mcr = STM32FxMCR, .btr = CAN_BTR_50 }; static const CANConfig canConfig83 = { .mcr = STM32FxMCR, .btr = CAN_BTR_83 }; static const CANConfig canConfig100 = { .mcr = STM32FxMCR, .btr = CAN_BTR_100 }; static const CANConfig canConfig125 = { .mcr = STM32FxMCR, .btr = CAN_BTR_125 }; static const CANConfig canConfig250 = { .mcr = STM32FxMCR, .btr = CAN_BTR_250 }; static const CANConfig canConfig500 = { .mcr = STM32FxMCR, .btr = CAN_BTR_500 }; static const CANConfig canConfig1000 = { .mcr = STM32FxMCR, .btr = CAN_BTR_1k0 }; static bool isValidCan1RxPin(brain_pin_e pin) { return pin == Gpio::A11 || pin == Gpio::B8 || pin == Gpio::D0 || pin == Gpio::G0; } static bool isValidCan1TxPin(brain_pin_e pin) { return pin == Gpio::A12 || pin == Gpio::B9 || pin == Gpio::D1 || pin == Gpio::G1; } static bool isValidCan2RxPin(brain_pin_e pin) { return pin == Gpio::B5 || pin == Gpio::B12 || pin == Gpio::G11; } static bool isValidCan2TxPin(brain_pin_e pin) { return pin == Gpio::B6 || pin == Gpio::B13 || pin == Gpio::G12; } bool isValidCanTxPin(brain_pin_e pin) { return isValidCan1TxPin(pin) || isValidCan2TxPin(pin); } bool isValidCanRxPin(brain_pin_e pin) { return isValidCan1RxPin(pin) || isValidCan2RxPin(pin); } CANDriver* detectCanDevice(brain_pin_e pinRx, brain_pin_e pinTx) { if (pinRx == Gpio::Unassigned || pinTx == Gpio::Unassigned) { return nullptr; } #if STM32_CAN_USE_CAN1 || STM32_CAN_USE_FDCAN1 if (isValidCan1RxPin(pinRx) && isValidCan1TxPin(pinTx)) return &CAND1; #endif #if STM32_CAN_USE_CAN2 || STM32_CAN_USE_FDCAN2 if (isValidCan2RxPin(pinRx) && isValidCan2TxPin(pinTx)) return &CAND2; #endif criticalError("invalid CAN pins tx %s and rx %s", hwPortname(pinTx), hwPortname(pinRx)); return nullptr; } const CANConfig * findCanConfig(can_baudrate_e rate) { switch (rate) { case B50KBPS: return &canConfig50; case B83KBPS: return &canConfig83; case B100KBPS: return &canConfig100; case B125KBPS: return &canConfig125; case B250KBPS: return &canConfig250; case B1MBPS: return &canConfig1000; case B500KBPS: default: return &canConfig500; } } void canHwInfo(CANDriver* cand) { /* TODO: */ (void)cand; } #endif /* EFI_CAN_SUPPORT */