/** * @file advance_map.cpp * * @date Mar 27, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "pch.h" #include "advance_map.h" #include "idle_thread.h" #include "launch_control.h" #include "gppwm_channel.h" #if EFI_ENGINE_CONTROL // TODO: wow move this into engineState at least for context not to leak from test to test! // todo: reset this between cranking attempts?! #2735 float minCrankingRpm = 0; static Map3D tcTimingDropTable{"tct"}; static Map3D tcSparkSkipTable{"tcs"}; #if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT /** * @return ignition timing angle advance before TDC */ angle_t getRunningAdvance(float rpm, float engineLoad) { if (std::isnan(engineLoad)) { warning(ObdCode::CUSTOM_NAN_ENGINE_LOAD, "NaN engine load"); return NAN; } efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !std::isnan(engineLoad), "invalid el", NAN); // compute base ignition angle from main table float advanceAngle = interpolate3d( config->ignitionTable, config->ignitionLoadBins, engineLoad, config->ignitionRpmBins, rpm ); float vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed); float wheelSlip = Sensor::getOrZero(SensorType::WheelSlipRatio); engine->ignitionState.tractionAdvanceDrop = tcTimingDropTable.getValue(wheelSlip, vehicleSpeed); engine->engineState.tractionControlSparkSkip = tcSparkSkipTable.getValue(wheelSlip, vehicleSpeed); engine->engineState.updateSparkSkip(); advanceAngle += engine->ignitionState.tractionAdvanceDrop; #if EFI_ANTILAG_SYSTEM if (engine->antilagController.isAntilagCondition) { float throttleIntent = Sensor::getOrZero(SensorType::DriverThrottleIntent); engine->antilagController.timingALSCorrection = interpolate3d( config->ALSTimingRetardTable, config->alsIgnRetardLoadBins, throttleIntent, config->alsIgnRetardrpmBins, rpm ); advanceAngle += engine->antilagController.timingALSCorrection; } #endif /* EFI_ANTILAG_SYSTEM */ // Add any adjustments if configured for (size_t i = 0; i < efi::size(config->ignBlends); i++) { auto result = calculateBlend(config->ignBlends[i], rpm, engineLoad); engine->outputChannels.ignBlendParameter[i] = result.BlendParameter; engine->outputChannels.ignBlendBias[i] = result.Bias; engine->outputChannels.ignBlendOutput[i] = result.Value; advanceAngle += result.Value; } // get advance from the separate table for Idle #if EFI_IDLE_CONTROL if (engineConfiguration->useSeparateAdvanceForIdle && engine->module()->isIdlingOrTaper()) { float idleAdvance = interpolate2d(rpm, config->idleAdvanceBins, config->idleAdvance); auto tps = Sensor::get(SensorType::DriverThrottleIntent); if (tps) { // interpolate between idle table and normal (running) table using TPS threshold advanceAngle = interpolateClamped(0.0f, idleAdvance, engineConfiguration->idlePidDeactivationTpsThreshold, advanceAngle, tps.Value); } } #endif #if EFI_LAUNCH_CONTROL if (engineConfiguration->launchControlEnabled && engineConfiguration->enableLaunchRetard) { const float launchAngle = engineConfiguration->launchTimingRetard; if (engine->launchController.isPreLaunchCondition) { const int launchRpm = engineConfiguration->launchRpm; const int smoothRetardStartRpm = (launchRpm - engineConfiguration->launchRpmWindow); const int smoothRetardEndRpm = (launchRpm - engineConfiguration->launchCorrectionsEndRpm); if (smoothRetardStartRpm <= rpm) { if (engineConfiguration->launchSmoothRetard && (rpm <= smoothRetardEndRpm)) { // https://github.com/rusefi/rusefi/issues/5611#issuecomment-2130431696 return interpolateClamped(smoothRetardStartRpm, advanceAngle, smoothRetardEndRpm, launchAngle, rpm); } else { return launchAngle; } } } else if (engine->launchController.isLaunchCondition) { return launchAngle; } } if (engineConfiguration->torqueReductionEnabled && engine->shiftTorqueReductionController.isFlatShiftConditionSatisfied ) { return engineConfiguration->torqueReductionIgnitionRetard; } #endif /* EFI_LAUNCH_CONTROL */ return advanceAngle; } angle_t getAdvanceCorrections(float engineLoad) { auto iat = Sensor::get(SensorType::Iat); if (!iat) { engine->ignitionState.timingIatCorrection = 0; } else { engine->ignitionState.timingIatCorrection = interpolate3d( config->ignitionIatCorrTable, config->ignitionIatCorrLoadBins, engineLoad, config->ignitionIatCorrTempBins, iat.Value ); } #if EFI_IDLE_CONTROL float instantRpm = engine->triggerCentral.instantRpm.getInstantRpm(); engine->ignitionState.timingPidCorrection = engine->module()->getIdleTimingAdjustment(instantRpm); #endif // EFI_IDLE_CONTROL #if EFI_TUNER_STUDIO engine->outputChannels.multiSparkCounter = engine->engineState.multispark.count; #endif /* EFI_TUNER_STUDIO */ return engine->ignitionState.timingIatCorrection + engine->ignitionState.cltTimingCorrection + engine->ignitionState.timingPidCorrection; } /** * @return ignition timing angle advance before TDC for Cranking */ angle_t getCrankingAdvance(float rpm, float engineLoad) { // get advance from the separate table for Cranking if (engineConfiguration->useSeparateAdvanceForCranking) { return interpolate2d(rpm, config->crankingAdvanceBins, config->crankingAdvance); } // Interpolate the cranking timing angle to the earlier running angle for faster engine start angle_t crankingToRunningTransitionAngle = getRunningAdvance(engineConfiguration->cranking.rpm, engineLoad); // interpolate not from zero, but starting from min. possible rpm detected if (rpm < minCrankingRpm || minCrankingRpm == 0) minCrankingRpm = rpm; return interpolateClamped(minCrankingRpm, engineConfiguration->crankingTimingAngle, engineConfiguration->cranking.rpm, crankingToRunningTransitionAngle, rpm); } #endif // EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT angle_t getAdvance(float rpm, float engineLoad) { #if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT if (std::isnan(engineLoad)) { return 0; // any error should already be reported } if (engineConfiguration->timingMode == TM_FIXED) { // fixed timing is the simple: cranking/running does not matter, no corrections! return engineConfiguration->fixedTiming; } angle_t angle; bool isCranking = engine->rpmCalculator.isCranking(); if (isCranking) { angle = getCrankingAdvance(rpm, engineLoad); assertAngleRange(angle, "crAngle", ObdCode::CUSTOM_ERR_ANGLE_CR); efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !std::isnan(angle), "cr_AngleN", 0); } else { angle = getRunningAdvance(rpm, engineLoad); if (std::isnan(angle)) { warning(ObdCode::CUSTOM_ERR_6610, "NaN angle from table"); return 0; } } // Allow if we're either not cranking OR allowed to correct in cranking bool allowCorrections = !isCranking || engineConfiguration->useAdvanceCorrectionsForCranking; if (allowCorrections) { angle_t correction = getAdvanceCorrections(engineLoad); if (!std::isnan(correction)) { // correction could be NaN during settings update angle += correction; } } efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !std::isnan(angle), "_AngleN5", 0); return angle; #else return 0; #endif } angle_t getWrappedAdvance(const float rpm, const float engineLoad) { angle_t angle = getAdvance(rpm, engineLoad) * engine->ignitionState.luaTimingMult + engine->ignitionState.luaTimingAdd; wrapAngle(angle, "getWrappedAdvance", ObdCode::CUSTOM_ERR_ADCANCE_CALC_ANGLE); return angle; } angle_t getCylinderIgnitionTrim(size_t cylinderNumber, float rpm, float ignitionLoad) { return interpolate3d( config->ignTrims[cylinderNumber].table, config->ignTrimLoadBins, ignitionLoad, config->ignTrimRpmBins, rpm ); } size_t getMultiSparkCount(float rpm) { // Compute multispark (if enabled) if (engineConfiguration->multisparkEnable && rpm <= engineConfiguration->multisparkMaxRpm && engineConfiguration->multisparkMaxExtraSparkCount > 0) { // For zero RPM, disable multispark. We don't yet know the engine speed, so multispark may not be safe. if (rpm == 0) { return 0; } floatus_t multiDelay = 1000.0f * engineConfiguration->multisparkSparkDuration; floatus_t multiDwell = 1000.0f * engineConfiguration->multisparkDwell; // dwell times are below 10 seconds here so we use 32 bit type for performance reasons engine->engineState.multispark.delay = (uint32_t)USF2NT(multiDelay); engine->engineState.multispark.dwell = (uint32_t)USF2NT(multiDwell); constexpr float usPerDegreeAt1Rpm = 60e6 / 360; floatus_t usPerDegree = usPerDegreeAt1Rpm / rpm; // How long is there for sparks? The user configured an angle, convert to time. floatus_t additionalSparksUs = usPerDegree * engineConfiguration->multisparkMaxSparkingAngle; // How long does one spark take? floatus_t oneSparkTime = multiDelay + multiDwell; // How many sparks can we fit in the alloted time? float sparksFitInTime = additionalSparksUs / oneSparkTime; // Take the floor (convert to uint8_t) - we want to undershoot, not overshoot uint32_t floored = sparksFitInTime; // Allow no more than the maximum number of extra sparks return minI(floored, engineConfiguration->multisparkMaxExtraSparkCount); } else { return 0; } } void initIgnitionAdvanceControl() { tcTimingDropTable.initTable(engineConfiguration->tractionControlTimingDrop, engineConfiguration->tractionControlSlipBins, engineConfiguration->tractionControlSpeedBins); tcSparkSkipTable.initTable(engineConfiguration->tractionControlIgnitionSkip, engineConfiguration->tractionControlSlipBins, engineConfiguration->tractionControlSpeedBins); } #endif // EFI_ENGINE_CONTROL