/** * @file engine_math.cpp * @brief * * @date Jul 13, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "pch.h" #include "event_registry.h" #include "fuel_math.h" #include "advance_map.h" #include "gppwm_channel.h" #if EFI_UNIT_TEST extern bool verboseMode; #endif /* EFI_UNIT_TEST */ angle_t wrapAngleMethod(angle_t param, const char *msg, ObdCode code) { fixAngle(param, msg, code); return param; } floatms_t getEngineCycleDuration(int rpm) { return getCrankshaftRevolutionTimeMs(rpm) * (getEngineRotationState()->getOperationMode() == TWO_STROKE ? 1 : 2); } /** * @return number of milliseconds in one crank shaft revolution */ floatms_t getCrankshaftRevolutionTimeMs(int rpm) { if (rpm == 0) { return NAN; } return 360 * getOneDegreeTimeMs(rpm); } float getFuelingLoad() { return getEngineState()->fuelingLoad; } float getIgnitionLoad() { return getEngineState()->ignitionLoad; } /** * see also setConstantDwell */ void setSingleCoilDwell() { for (int i = 0; i < DWELL_CURVE_SIZE; i++) { config->sparkDwellRpmBins[i] = (i + 1) * 50; config->sparkDwellValues[i] = 4; } config->sparkDwellRpmBins[5] = 500; config->sparkDwellValues[5] = 4; config->sparkDwellRpmBins[6] = 4500; config->sparkDwellValues[6] = 4; config->sparkDwellRpmBins[7] = 12500; config->sparkDwellValues[7] = 0; } /** * @return Spark dwell time, in milliseconds. 0 if tables are not ready. */ floatms_t IgnitionState::getSparkDwell(int rpm) { #if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT float dwellMs; if (engine->rpmCalculator.isCranking()) { dwellMs = engineConfiguration->ignitionDwellForCrankingMs; } else { efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(rpm), "invalid rpm", NAN); baseDwell = interpolate2d(rpm, config->sparkDwellRpmBins, config->sparkDwellValues); dwellVoltageCorrection = interpolate2d( Sensor::getOrZero(SensorType::BatteryVoltage), engineConfiguration->dwellVoltageCorrVoltBins, engineConfiguration->dwellVoltageCorrValues ); // for compat (table full of zeroes) if (dwellVoltageCorrection < 0.1f) { dwellVoltageCorrection = 1; } dwellMs = baseDwell * dwellVoltageCorrection; } if (cisnan(dwellMs) || dwellMs <= 0) { // this could happen during engine configuration reset warning(ObdCode::CUSTOM_ERR_DWELL_DURATION, "invalid dwell: %.2f at rpm=%d", dwellMs, rpm); return 0; } return dwellMs; #else return 0; #endif } static const uint8_t order_1[] = {1}; static const uint8_t order_1_2[] = {1, 2}; static const uint8_t order_1_2_3[] = {1, 2, 3}; static const uint8_t order_1_3_2[] = {1, 3, 2}; // 4 cylinder static const uint8_t order_1_THEN_3_THEN_4_THEN2[] = { 1, 3, 4, 2 }; static const uint8_t order_1_THEN_2_THEN_4_THEN3[] = { 1, 2, 4, 3 }; static const uint8_t order_1_THEN_3_THEN_2_THEN4[] = { 1, 3, 2, 4 }; static const uint8_t order_1_THEN_4_THEN_3_THEN2[] = { 1, 4, 3, 2 }; // 5 cylinder static const uint8_t order_1_2_4_5_3[] = {1, 2, 4, 5, 3}; // 6 cylinder static const uint8_t order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[] = { 1, 5, 3, 6, 2, 4 }; static const uint8_t order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6[] = { 1, 4, 2, 5, 3, 6 }; static const uint8_t order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6[] = { 1, 2, 3, 4, 5, 6 }; static const uint8_t order_1_6_3_2_5_4[] = {1, 6, 3, 2, 5, 4}; static const uint8_t order_1_4_3_6_2_5[] = {1, 4, 3, 6, 2, 5}; static const uint8_t order_1_6_2_4_3_5[] = {1, 6, 2, 4, 3, 5}; static const uint8_t order_1_6_5_4_3_2[] = {1, 6, 5, 4, 3, 2}; static const uint8_t order_1_4_5_2_3_6[] = {1, 4, 5, 2, 3, 6}; // 8 cylinder static const uint8_t order_1_8_4_3_6_5_7_2[] = { 1, 8, 4, 3, 6, 5, 7, 2 }; static const uint8_t order_1_8_7_2_6_5_4_3[] = { 1, 8, 7, 2, 6, 5, 4, 3 }; static const uint8_t order_1_5_4_2_6_3_7_8[] = { 1, 5, 4, 2, 6, 3, 7, 8 }; static const uint8_t order_1_2_7_8_4_5_6_3[] = { 1, 2, 7, 8, 4, 5, 6, 3 }; static const uint8_t order_1_3_7_2_6_5_4_8[] = { 1, 3, 7, 2, 6, 5, 4, 8 }; static const uint8_t order_1_2_3_4_5_6_7_8[] = { 1, 2, 3, 4, 5, 6, 7, 8 }; static const uint8_t order_1_5_4_8_6_3_7_2[] = { 1, 5, 4, 8, 6, 3, 7, 2 }; static const uint8_t order_1_8_7_3_6_5_4_2[] = { 1, 8, 7, 3, 6, 5, 4, 2 }; // 9 cylinder static const uint8_t order_1_2_3_4_5_6_7_8_9[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // 10 cylinder static const uint8_t order_1_10_9_4_3_6_5_8_7_2[] = {1, 10, 9, 4, 3, 6, 5, 8, 7, 2}; // 12 cyliner static const uint8_t order_1_7_5_11_3_9_6_12_2_8_4_10[] = {1, 7, 5, 11, 3, 9, 6, 12, 2, 8, 4, 10}; static const uint8_t order_1_7_4_10_2_8_6_12_3_9_5_11[] = {1, 7, 4, 10, 2, 8, 6, 12, 3, 9, 5, 11}; static const uint8_t order_1_12_5_8_3_10_6_7_2_11_4_9[] = {1, 12, 5, 8, 3, 10, 6, 7, 2, 11, 4, 9}; static const uint8_t order_1_2_3_4_5_6_7_8_9_10_11_12[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; // no comments static const uint8_t order_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10[] = {1, 14, 9, 4, 7, 12, 15, 6, 13, 8, 3, 16, 11, 2, 5, 10}; static size_t getFiringOrderLength() { switch (engineConfiguration->firingOrder) { case FO_1: return 1; // 2 cylinder case FO_1_2: return 2; // 3 cylinder case FO_1_2_3: case FO_1_3_2: return 3; // 4 cylinder case FO_1_3_4_2: case FO_1_2_4_3: case FO_1_3_2_4: case FO_1_4_3_2: return 4; // 5 cylinder case FO_1_2_4_5_3: return 5; // 6 cylinder case FO_1_5_3_6_2_4: case FO_1_4_2_5_3_6: case FO_1_2_3_4_5_6: case FO_1_6_3_2_5_4: case FO_1_4_3_6_2_5: case FO_1_6_2_4_3_5: case FO_1_6_5_4_3_2: case FO_1_4_5_2_3_6: return 6; // 8 cylinder case FO_1_8_4_3_6_5_7_2: case FO_1_8_7_2_6_5_4_3: case FO_1_5_4_2_6_3_7_8: case FO_1_2_7_8_4_5_6_3: case FO_1_3_7_2_6_5_4_8: case FO_1_2_3_4_5_6_7_8: case FO_1_5_4_8_6_3_7_2: case FO_1_8_7_3_6_5_4_2: return 8; // 9 cylinder radial case FO_1_2_3_4_5_6_7_8_9: return 9; // 10 cylinder case FO_1_10_9_4_3_6_5_8_7_2: return 10; // 12 cylinder case FO_1_7_5_11_3_9_6_12_2_8_4_10: case FO_1_7_4_10_2_8_6_12_3_9_5_11: case FO_1_12_5_8_3_10_6_7_2_11_4_9: case FO_1_2_3_4_5_6_7_8_9_10_11_12: return 12; case FO_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10: return 16; default: firmwareError(ObdCode::CUSTOM_OBD_UNKNOWN_FIRING_ORDER, "Invalid firing order: %d", engineConfiguration->firingOrder); } return 1; } static const uint8_t* getFiringOrderTable() { switch (engineConfiguration->firingOrder) { case FO_1: return order_1; // 2 cylinder case FO_1_2: return order_1_2; // 3 cylinder case FO_1_2_3: return order_1_2_3; case FO_1_3_2: return order_1_3_2; // 4 cylinder case FO_1_3_4_2: return order_1_THEN_3_THEN_4_THEN2; case FO_1_2_4_3: return order_1_THEN_2_THEN_4_THEN3; case FO_1_3_2_4: return order_1_THEN_3_THEN_2_THEN4; case FO_1_4_3_2: return order_1_THEN_4_THEN_3_THEN2; // 5 cylinder case FO_1_2_4_5_3: return order_1_2_4_5_3; // 6 cylinder case FO_1_5_3_6_2_4: return order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4; case FO_1_4_2_5_3_6: return order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6; case FO_1_2_3_4_5_6: return order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6; case FO_1_6_3_2_5_4: return order_1_6_3_2_5_4; case FO_1_4_3_6_2_5: return order_1_4_3_6_2_5; case FO_1_6_2_4_3_5: return order_1_6_2_4_3_5; case FO_1_6_5_4_3_2: return order_1_6_5_4_3_2; case FO_1_4_5_2_3_6: return order_1_4_5_2_3_6; // 8 cylinder case FO_1_8_4_3_6_5_7_2: return order_1_8_4_3_6_5_7_2; case FO_1_8_7_2_6_5_4_3: return order_1_8_7_2_6_5_4_3; case FO_1_5_4_2_6_3_7_8: return order_1_5_4_2_6_3_7_8; case FO_1_2_7_8_4_5_6_3: return order_1_2_7_8_4_5_6_3; case FO_1_3_7_2_6_5_4_8: return order_1_3_7_2_6_5_4_8; case FO_1_2_3_4_5_6_7_8: return order_1_2_3_4_5_6_7_8; case FO_1_5_4_8_6_3_7_2: return order_1_5_4_8_6_3_7_2; case FO_1_8_7_3_6_5_4_2: return order_1_8_7_3_6_5_4_2; // 9 cylinder case FO_1_2_3_4_5_6_7_8_9: return order_1_2_3_4_5_6_7_8_9; // 10 cylinder case FO_1_10_9_4_3_6_5_8_7_2: return order_1_10_9_4_3_6_5_8_7_2; // 12 cylinder case FO_1_7_5_11_3_9_6_12_2_8_4_10: return order_1_7_5_11_3_9_6_12_2_8_4_10; case FO_1_7_4_10_2_8_6_12_3_9_5_11: return order_1_7_4_10_2_8_6_12_3_9_5_11; case FO_1_12_5_8_3_10_6_7_2_11_4_9: return order_1_12_5_8_3_10_6_7_2_11_4_9; case FO_1_2_3_4_5_6_7_8_9_10_11_12: return order_1_2_3_4_5_6_7_8_9_10_11_12; // do not ask case FO_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10: return order_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10; default: firmwareError(ObdCode::CUSTOM_OBD_UNKNOWN_FIRING_ORDER, "Invalid firing order: %d", engineConfiguration->firingOrder); } return NULL; } /** * @param index from zero to cylindersCount - 1 * @return cylinderId from one to cylindersCount */ size_t getCylinderId(size_t index) { const size_t firingOrderLength = getFiringOrderLength(); if (firingOrderLength < 1 || firingOrderLength > MAX_CYLINDER_COUNT) { firmwareError(ObdCode::CUSTOM_FIRING_LENGTH, "fol %d", firingOrderLength); return 1; } if (engineConfiguration->cylindersCount != firingOrderLength) { // May 2020 this somehow still happens with functional tests, maybe race condition? firmwareError(ObdCode::CUSTOM_OBD_WRONG_FIRING_ORDER, "Wrong cyl count for firing order, expected %d cylinders", firingOrderLength); return 1; } if (index >= firingOrderLength) { // May 2020 this somehow still happens with functional tests, maybe race condition? warning(ObdCode::CUSTOM_ERR_6686, "firing order index %d", index); return 1; } if (auto firingOrderTable = getFiringOrderTable()) { return firingOrderTable[index]; } else { // error already reported return 1; } } /** * @param prevCylinderId from one to cylindersCount * @return cylinderId from one to cylindersCount */ size_t getNextFiringCylinderId(size_t prevCylinderId) { const size_t firingOrderLength = getFiringOrderLength(); auto firingOrderTable = getFiringOrderTable(); if (firingOrderTable) { for (size_t i = 0; i < firingOrderLength; i++) { if (firingOrderTable[i] == prevCylinderId) { return firingOrderTable[(i + 1) % firingOrderLength]; } } } return 1; } /** * @return IM_WASTED_SPARK if in SPINNING mode and IM_INDIVIDUAL_COILS setting * @return engineConfiguration->ignitionMode otherwise */ ignition_mode_e getCurrentIgnitionMode() { ignition_mode_e ignitionMode = engineConfiguration->ignitionMode; #if EFI_SHAFT_POSITION_INPUT // In spin-up cranking mode we don't have full phase sync info yet, so wasted spark mode is better // However, only do this on even cylinder count engines: odd cyl count doesn't fire at all if (ignitionMode == IM_INDIVIDUAL_COILS && (engineConfiguration->cylindersCount % 2 == 0)) { bool missingPhaseInfoForSequential = !engine->triggerCentral.triggerState.hasSynchronizedPhase(); if (engine->rpmCalculator.isSpinningUp() || missingPhaseInfoForSequential) { ignitionMode = IM_WASTED_SPARK; } } #endif /* EFI_SHAFT_POSITION_INPUT */ return ignitionMode; } #if EFI_ENGINE_CONTROL /** * This heavy method is only invoked in case of a configuration change or initialization. */ void prepareOutputSignals() { getEngineState()->engineCycle = getEngineCycle(getEngineRotationState()->getOperationMode()); #if EFI_UNIT_TEST if (verboseMode) { printf("prepareOutputSignals %d %s\r\n", engineConfiguration->trigger.type, getIgnition_mode_e(engineConfiguration->ignitionMode)); } #endif /* EFI_UNIT_TEST */ #if EFI_SHAFT_POSITION_INPUT engine->triggerCentral.prepareTriggerShape(); #endif // EFI_SHAFT_POSITION_INPUT // Fuel schedule may now be completely wrong, force a reset engine->injectionEvents.invalidate(); } angle_t getPerCylinderFiringOrderOffset(uint8_t cylinderIndex, uint8_t cylinderNumber) { // base = position of this cylinder in the firing order. // We get a cylinder every n-th of an engine cycle where N is the number of cylinders auto firingOrderOffset = engine->engineState.engineCycle * cylinderIndex / engineConfiguration->cylindersCount; assertAngleRange(firingOrderOffset, "getPerCylinderFiringOrderOffset", ObdCode::CUSTOM_ERR_6566); return firingOrderOffset; } void setTimingRpmBin(float from, float to) { setRpmBin(config->ignitionRpmBins, IGN_RPM_COUNT, from, to); } void setTimingLoadBin(float from, float to) { setLinearCurve(config->ignitionLoadBins, from, to); } /** * this method sets algorithm and ignition table scale */ void setAlgorithm(engine_load_mode_e algo) { engineConfiguration->fuelAlgorithm = algo; } void setFlatInjectorLag(float value) { setArrayValues(engineConfiguration->injector.battLagCorr, value); } BlendResult calculateBlend(blend_table_s& cfg, float rpm, float load) { // If set to 0, skip the math as its disabled if (cfg.blendParameter == GPPWM_Zero) { return { 0, 0, 0 }; } auto value = readGppwmChannel(cfg.blendParameter); if (!value) { return { 0, 0, 0 }; } float tableValue = interpolate3d( cfg.table, cfg.loadBins, load, cfg.rpmBins, rpm ); float blendFactor = interpolate2d(value.Value, cfg.blendBins, cfg.blendValues); return { value.Value, blendFactor, 0.01f * blendFactor * tableValue }; } #endif /* EFI_ENGINE_CONTROL */