/* * @file spark_logic.cpp * * @date Sep 15, 2016 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "pch.h" #include "spark_logic.h" #include "utlist.h" #include "event_queue.h" #include "knock_logic.h" #if EFI_ENGINE_CONTROL #if EFI_UNIT_TEST extern bool verboseMode; #endif /* EFI_UNIT_TEST */ #if EFI_PRINTF_FUEL_DETAILS || FUEL_MATH_EXTREME_LOGGING extern bool printFuelDebug; #endif // EFI_PRINTF_FUEL_DETAILS static const char *prevSparkName = nullptr; static void fireSparkBySettingPinLow(IgnitionEvent *event, IgnitionOutputPin *output) { #if SPARK_EXTREME_LOGGING efiPrintf("spark goes low revolution=%d [%s] %d current=%d id=%d", getRevolutionCounter(), output->getName(), time2print(getTimeNowUs()), output->currentLogicValue, event->sparkCounter); #endif /* SPARK_EXTREME_LOGGING */ /** * there are two kinds of 'out-of-order' * 1) low goes before high, everything is fine afterwards * * 2) we have an un-matched low followed by legit pairs */ output->signalFallSparkId = event->sparkCounter; if (!output->currentLogicValue && !event->wasSparkLimited) { #if SPARK_EXTREME_LOGGING printf("out-of-order coil off %s", output->getName()); #endif /* SPARK_EXTREME_LOGGING */ warning(ObdCode::CUSTOM_OUT_OF_ORDER_COIL, "out-of-order coil off %s", output->getName()); } output->setLow(); } static void assertPinAssigned(IgnitionOutputPin* output) { if (!output->isInitialized()) { warning(ObdCode::CUSTOM_OBD_COIL_PIN_NOT_ASSIGNED, "Pin Not Assigned check configuration #%s", output->getName()); \ } } /** * @param cylinderIndex from 0 to cylinderCount, not cylinder number */ static int getIgnitionPinForIndex(int cylinderIndex, ignition_mode_e ignitionMode) { switch (ignitionMode) { case IM_ONE_COIL: return 0; case IM_WASTED_SPARK: { if (engineConfiguration->cylindersCount == 1) { // we do not want to divide by zero return 0; } return cylinderIndex % (engineConfiguration->cylindersCount / 2); } case IM_INDIVIDUAL_COILS: return cylinderIndex; case IM_TWO_COILS: return cylinderIndex % 2; default: firmwareError(ObdCode::CUSTOM_OBD_IGNITION_MODE, "Invalid ignition mode getIgnitionPinForIndex(): %d", engineConfiguration->ignitionMode); return 0; } } static void prepareCylinderIgnitionSchedule(angle_t dwellAngleDuration, floatms_t sparkDwell, IgnitionEvent *event) { // todo: clean up this implementation? does not look too nice as is. // let's save planned duration so that we can later compare it with reality event->sparkDwell = sparkDwell; auto ignitionMode = getCurrentIgnitionMode(); // On an odd cylinder (or odd fire) wasted spark engine, map outputs as if in sequential. // During actual scheduling, the events just get scheduled every 360 deg instead // of every 720 deg. if (ignitionMode == IM_WASTED_SPARK && engine->engineState.useOddFireWastedSpark) { ignitionMode = IM_INDIVIDUAL_COILS; } const int index = getIgnitionPinForIndex(event->cylinderIndex, ignitionMode); const int coilIndex = ID2INDEX(getFiringOrderCylinderId(index)); angle_t finalIgnitionTiming = getEngineState()->timingAdvance[coilIndex]; // Stash which cylinder we're scheduling so that knock sensing knows which // cylinder just fired event->coilIndex = coilIndex; // 10 ATDC ends up as 710, convert it to -10 so we can log and clamp correctly if (finalIgnitionTiming > 360) { finalIgnitionTiming -= 720; } // Clamp the final ignition timing to the configured limits // finalIgnitionTiming is deg BTDC // minimumIgnitionTiming limits maximum retard // maximumIgnitionTiming limits maximum advance /* https://github.com/rusefi/rusefi/issues/5894 disabling feature for now finalIgnitionTiming = clampF(engineConfiguration->minimumIgnitionTiming, finalIgnitionTiming, engineConfiguration->maximumIgnitionTiming); */ engine->outputChannels.ignitionAdvanceCyl[event->cylinderIndex] = finalIgnitionTiming; angle_t sparkAngle = // Negate because timing *before* TDC, and we schedule *after* TDC - finalIgnitionTiming // Offset by this cylinder's position in the cycle + getPerCylinderFiringOrderOffset(event->cylinderIndex, coilIndex); efiAssertVoid(ObdCode::CUSTOM_SPARK_ANGLE_1, !std::isnan(sparkAngle), "sparkAngle#1"); wrapAngle(sparkAngle, "findAngle#2", ObdCode::CUSTOM_ERR_6550); event->sparkAngle = sparkAngle; engine->outputChannels.currentIgnitionMode = static_cast(ignitionMode); IgnitionOutputPin *output = &enginePins.coils[coilIndex]; event->outputs[0] = output; IgnitionOutputPin *secondOutput; // We need two outputs if: // - we are running wasted spark, and have "two wire" mode enabled // - We are running sequential mode, but we're cranking, so we should run in two wire wasted mode (not one wire wasted) bool isTwoWireWasted = engineConfiguration->twoWireBatchIgnition || (engineConfiguration->ignitionMode == IM_INDIVIDUAL_COILS); if (ignitionMode == IM_WASTED_SPARK && isTwoWireWasted) { int secondIndex = index + engineConfiguration->cylindersCount / 2; int secondCoilIndex = ID2INDEX(getFiringOrderCylinderId(secondIndex)); secondOutput = &enginePins.coils[secondCoilIndex]; assertPinAssigned(secondOutput); } else { secondOutput = nullptr; } assertPinAssigned(output); event->outputs[1] = secondOutput; angle_t dwellStartAngle = sparkAngle - dwellAngleDuration; efiAssertVoid(ObdCode::CUSTOM_ERR_6590, !std::isnan(dwellStartAngle), "findAngle#5"); assertAngleRange(dwellStartAngle, "findAngle dwellStartAngle", ObdCode::CUSTOM_ERR_6550); wrapAngle(dwellStartAngle, "findAngle#7", ObdCode::CUSTOM_ERR_6550); event->dwellAngle = dwellStartAngle; #if FUEL_MATH_EXTREME_LOGGING if (printFuelDebug) { printf("addIgnitionEvent %s angle=%.1f\n", output->getName(), dwellStartAngle); } // efiPrintf("addIgnitionEvent %s ind=%d", output->name, event->dwellPosition->eventIndex); #endif /* FUEL_MATH_EXTREME_LOGGING */ } static void chargeTrailingSpark(IgnitionOutputPin* pin) { #if SPARK_EXTREME_LOGGING efiPrintf("chargeTrailingSpark %s", pin->getName()); #endif /* SPARK_EXTREME_LOGGING */ pin->setHigh(); } static void fireTrailingSpark(IgnitionOutputPin* pin) { #if SPARK_EXTREME_LOGGING efiPrintf("fireTrailingSpark %s", pin->getName()); #endif /* SPARK_EXTREME_LOGGING */ pin->setLow(); } static void overFireSparkAndPrepareNextSchedule(IgnitionEvent *event) { #if SPARK_EXTREME_LOGGING efiPrintf("overFireSparkAndPrepareNextSchedule %s", event->outputs[0]->getName()); #endif /* SPARK_EXTREME_LOGGING */ engine->engineState.overDwellCounter++; fireSparkAndPrepareNextSchedule(event); } /** * TL,DR: each IgnitionEvent is in charge of it's own scheduling forever, we plant next event while finishing handling of the current one */ void fireSparkAndPrepareNextSchedule(IgnitionEvent *event) { #if EFI_UNIT_TEST if (engine->onIgnitionEvent) { engine->onIgnitionEvent(event, false); } #endif for (int i = 0; i< MAX_OUTPUTS_FOR_IGNITION;i++) { IgnitionOutputPin *output = event->outputs[i]; if (output) { fireSparkBySettingPinLow(event, output); } } efitick_t nowNt = getTimeNowNt(); #if EFI_TOOTH_LOGGER LogTriggerCoilState(nowNt, false); #endif // EFI_TOOTH_LOGGER float actualDwellMs = event->actualDwellTimer.getElapsedSeconds(nowNt) * 1e3; /** * ratio of desired dwell duration to actual dwell duration gives us some idea of how good is input trigger jitter */ float ratio = actualDwellMs / event->sparkDwell; if (ratio < 0.8 || ratio > 1.2) { engine->outputChannels.sadDwellRatioCounter++; } #if !EFI_UNIT_TEST if (engineConfiguration->debugMode == DBG_DWELL_METRIC) { #if EFI_TUNER_STUDIO // todo: smarted solution for index to field mapping switch (event->cylinderIndex) { case 0: engine->outputChannels.debugFloatField1 = ratio; break; case 1: engine->outputChannels.debugFloatField2 = ratio; break; case 2: engine->outputChannels.debugFloatField3 = ratio; break; case 3: engine->outputChannels.debugFloatField4 = ratio; break; } #endif } #endif /* EFI_UNIT_TEST */ // now that we've just fired a coil let's prepare the new schedule for the next engine revolution angle_t dwellAngleDuration = engine->ignitionState.dwellDurationAngle; floatms_t sparkDwell = engine->ignitionState.sparkDwell; if (std::isnan(dwellAngleDuration) || std::isnan(sparkDwell)) { // we are here if engine has just stopped return; } // If there are more sparks to fire, schedule them if (event->sparksRemaining > 0) { event->sparksRemaining--; efitick_t nextDwellStart = nowNt + engine->engineState.multispark.delay; efitick_t nextFiring = nextDwellStart + engine->engineState.multispark.dwell; #if SPARK_EXTREME_LOGGING efiPrintf("schedule multispark"); #endif /* SPARK_EXTREME_LOGGING */ // We can schedule both of these right away, since we're going for "asap" not "particular angle" engine->executor.scheduleByTimestampNt("dwell", &event->dwellStartTimer, nextDwellStart, { &turnSparkPinHighStartCharging, event }); engine->executor.scheduleByTimestampNt("firing", &event->sparkEvent.eventScheduling, nextFiring, { fireSparkAndPrepareNextSchedule, event }); } else { if (engineConfiguration->enableTrailingSparks) { #if SPARK_EXTREME_LOGGING efiPrintf("scheduleByAngle TrailingSparks"); #endif /* SPARK_EXTREME_LOGGING */ // Trailing sparks are enabled - schedule an event for the corresponding trailing coil scheduleByAngle( &event->trailingSparkFire, nowNt, engine->engineState.trailingSparkAngle, { &fireTrailingSpark, &enginePins.trailingCoils[event->coilIndex] } ); } // If all events have been scheduled, prepare for next time. prepareCylinderIgnitionSchedule(dwellAngleDuration, sparkDwell, event); } engine->onSparkFireKnockSense(event->coilIndex, nowNt); } static bool startDwellByTurningSparkPinHigh(IgnitionEvent *event, IgnitionOutputPin *output) { // todo: no reason for this to be disabled in unit_test mode?! #if ! EFI_UNIT_TEST if (Sensor::getOrZero(SensorType::Rpm) > 2 * engineConfiguration->cranking.rpm) { const char *outputName = output->getName(); if (prevSparkName == outputName && getCurrentIgnitionMode() != IM_ONE_COIL) { warning(ObdCode::CUSTOM_OBD_SKIPPED_SPARK, "looks like skipped spark event revolution=%d [%s]", getRevolutionCounter(), outputName); } prevSparkName = outputName; } #endif /* EFI_UNIT_TEST */ #if SPARK_EXTREME_LOGGING efiPrintf("spark goes high revolution=%d [%s] %d current=%d id=%d", getRevolutionCounter(), output->getName(), time2print(getTimeNowUs()), output->currentLogicValue, event->sparkCounter); #endif /* SPARK_EXTREME_LOGGING */ if (output->signalFallSparkId >= event->sparkCounter) { /** * fact: we schedule both start of dwell and spark firing using a combination of time and trigger event domain * in case of bad/noisy signal we can get unexpected trigger events and a small time delay for spark firing before * we even start dwell if it scheduled with a longer time-only delay with fewer trigger events * * here we are detecting such out-of-order processing and choose the safer route of not even starting dwell * [tag] #6349 */ #if SPARK_EXTREME_LOGGING efiPrintf("[%s] bail spark dwell\n", output->getName()); #endif /* SPARK_EXTREME_LOGGING */ // let's save this coil if things do not look right engine->engineState.sparkOutOfOrderCounter++; return true; } output->setHigh(); return false; } void turnSparkPinHighStartCharging(IgnitionEvent *event) { efitick_t nowNt = getTimeNowNt(); event->actualDwellTimer.reset(nowNt); bool skippedDwellDueToTriggerNoised = false; for (int i = 0; i< MAX_OUTPUTS_FOR_IGNITION;i++) { IgnitionOutputPin *output = event->outputs[i]; if (output != NULL) { // at the moment we have a funny xor as if outputs could have different destiny. That's probably an over exaggeration, // realistically it should be enough to check the sequencing of only the first output but that would be less elegant // // maybe it would have need nicer if instead of an array of outputs we had a linked list of outputs? but that's just daydreaming. skippedDwellDueToTriggerNoised |= startDwellByTurningSparkPinHigh(event, output); } } #if EFI_UNIT_TEST engine->incrementBailedOnDwellCount(); #endif if (!skippedDwellDueToTriggerNoised) { #if EFI_UNIT_TEST if (engine->onIgnitionEvent) { engine->onIgnitionEvent(event, true); } #endif #if EFI_TOOTH_LOGGER LogTriggerCoilState(nowNt, true); #endif // EFI_TOOTH_LOGGER } if (engineConfiguration->enableTrailingSparks) { IgnitionOutputPin *output = &enginePins.trailingCoils[event->coilIndex]; // Trailing sparks are enabled - schedule an event for the corresponding trailing coil scheduleByAngle( &event->trailingSparkCharge, nowNt, engine->engineState.trailingSparkAngle, { &chargeTrailingSpark, output } ); } } #if EFI_PROD_CODE #define ENABLE_OVERDWELL_PROTECTION (true) #else #define ENABLE_OVERDWELL_PROTECTION (engine->enableOverdwellProtection) #endif static void scheduleSparkEvent(bool limitedSpark, IgnitionEvent *event, int rpm, float dwellMs, float dwellAngle, float sparkAngle, efitick_t edgeTimestamp, float currentPhase, float nextPhase) { float angleOffset = dwellAngle - currentPhase; if (angleOffset < 0) { angleOffset += engine->engineState.engineCycle; } /** * By the way 32-bit value should hold at least 400 hours of events at 6K RPM x 12 events per revolution * [tag:duration_limit] */ event->sparkCounter = engine->engineState.globalSparkCounter++; event->wasSparkLimited = limitedSpark; efitick_t chargeTime = 0; /** * The start of charge is always within the current trigger event range, so just plain time-based scheduling */ if (!limitedSpark) { #if SPARK_EXTREME_LOGGING efiPrintf("scheduling sparkUp revolution=%d [%s] %d later id=%d", getRevolutionCounter(), event->getOutputForLoggins()->getName(), (int)angleOffset, event->sparkCounter); #endif /* SPARK_EXTREME_LOGGING */ /** * Note how we do not check if spark is limited or not while scheduling 'spark down' * This way we make sure that coil dwell started while spark was enabled would fire and not burn * the coil. */ chargeTime = scheduleByAngle(&event->dwellStartTimer, edgeTimestamp, angleOffset, { &turnSparkPinHighStartCharging, event }); #if EFI_UNIT_TEST engine->onScheduleTurnSparkPinHighStartCharging(*event, edgeTimestamp, angleOffset, chargeTime); #endif #if SPARK_EXTREME_LOGGING efiPrintf("sparkUp revolution scheduled=%d for %d ticks [%s] %d later id=%d", getRevolutionCounter(), time2print(chargeTime), event->getOutputForLoggins()->getName(), (int)angleOffset, event->sparkCounter); #endif /* SPARK_EXTREME_LOGGING */ event->sparksRemaining = engine->engineState.multispark.count; } else { // don't fire multispark if spark is cut completely! event->sparksRemaining = 0; } /** * Spark event is often happening during a later trigger event timeframe */ efiAssertVoid(ObdCode::CUSTOM_ERR_6591, !std::isnan(sparkAngle), "findAngle#4"); assertAngleRange(sparkAngle, "findAngle#a5", ObdCode::CUSTOM_ERR_6549); bool isTimeScheduled = engine->module()->scheduleOrQueue( "spark", &event->sparkEvent, edgeTimestamp, sparkAngle, { fireSparkAndPrepareNextSchedule, event }, currentPhase, nextPhase); if (isTimeScheduled) { // event was scheduled by time, we expect it to happen reliably #if SPARK_EXTREME_LOGGING efiPrintf("scheduling sparkDown revolution=%d [%s] later id=%d", getRevolutionCounter(), event->getOutputForLoggins()->getName(), event->sparkCounter); #endif /* FUEL_MATH_EXTREME_LOGGING */ } else { // event was queued in relation to some expected tooth event in the future which might just never come so we shall protect from over-dwell #if SPARK_EXTREME_LOGGING efiPrintf("to queue sparkDown revolution=%d [%s] for id=%d angle=%.1f", getRevolutionCounter(), event->getOutputForLoggins()->getName(), event->sparkCounter, sparkAngle); #endif /* SPARK_EXTREME_LOGGING */ if (!limitedSpark && ENABLE_OVERDWELL_PROTECTION) { // auto fire spark at 1.5x nominal dwell efitick_t fireTime = sumTickAndFloat(chargeTime, MSF2NT(1.5f * dwellMs)); #if SPARK_EXTREME_LOGGING efiPrintf("scheduling overdwell sparkDown revolution=%d [%s] for id=%d for %d ticks", getRevolutionCounter(), event->getOutputForLoggins()->getName(), event->sparkCounter, fireTime); #endif /* SPARK_EXTREME_LOGGING */ /** * todo: can we please comprehend/document how this even works? we seem to be reusing 'sparkEvent.scheduling' instance * and it looks like current (smart?) re-queuing is effectively cancelling out the overdwell? is that the way this was intended to work? * [tag:overdwell] */ engine->executor.scheduleByTimestampNt("overdwell", &event->sparkEvent.eventScheduling, fireTime, { overFireSparkAndPrepareNextSchedule, event }); #if EFI_UNIT_TEST engine->onScheduleOverFireSparkAndPrepareNextSchedule(*event, fireTime); #endif } else { engine->engineState.overDwellNotScheduledCounter++; } } #if EFI_UNIT_TEST if (verboseMode) { printf("spark dwell@ %.1f spark@ %.2f id=%d sparkCounter=%d\r\n", event->dwellAngle, event->sparkEvent.getAngle(), event->coilIndex, event->sparkCounter); } #endif } void initializeIgnitionActions() { IgnitionEventList *list = &engine->ignitionEvents; angle_t dwellAngle = engine->ignitionState.dwellDurationAngle; floatms_t sparkDwell = engine->ignitionState.sparkDwell; if (std::isnan(engine->engineState.timingAdvance[0]) || std::isnan(dwellAngle)) { // error should already be reported // need to invalidate previous ignition schedule list->isReady = false; return; } efiAssertVoid(ObdCode::CUSTOM_ERR_6592, engineConfiguration->cylindersCount > 0, "cylindersCount"); for (size_t cylinderIndex = 0; cylinderIndex < engineConfiguration->cylindersCount; cylinderIndex++) { list->elements[cylinderIndex].cylinderIndex = cylinderIndex; prepareCylinderIgnitionSchedule(dwellAngle, sparkDwell, &list->elements[cylinderIndex]); } list->isReady = true; } static void prepareIgnitionSchedule() { ScopePerf perf(PE::PrepareIgnitionSchedule); operation_mode_e operationMode = getEngineRotationState()->getOperationMode(); float maxAllowedDwellAngle; if (getCurrentIgnitionMode() == IM_ONE_COIL) { maxAllowedDwellAngle = getEngineCycle(operationMode) / engineConfiguration->cylindersCount / 1.1; } else { maxAllowedDwellAngle = (int) (getEngineCycle(operationMode) / 2); // the cast is about making Coverity happy } if (engine->ignitionState.dwellDurationAngle == 0) { warning(ObdCode::CUSTOM_ZERO_DWELL, "dwell is zero?"); } if (engine->ignitionState.dwellDurationAngle > maxAllowedDwellAngle) { warning(ObdCode::CUSTOM_DWELL_TOO_LONG, "dwell angle too long: %.2f", engine->ignitionState.dwellDurationAngle); } // todo: add some check for dwell overflow? like 4 times 6 ms while engine cycle is less then that initializeIgnitionActions(); } void onTriggerEventSparkLogic(int rpm, efitick_t edgeTimestamp, float currentPhase, float nextPhase) { ScopePerf perf(PE::OnTriggerEventSparkLogic); if (!isValidRpm(rpm) || !engineConfiguration->isIgnitionEnabled) { // this might happen for instance in case of a single trigger event after a pause return; } LimpState limitedSparkState = getLimpManager()->allowIgnition(); // todo: eliminate state copy logic by giving limpManager it's owm limp_manager.txt and leveraging LiveData engine->outputChannels.sparkCutReason = (int8_t)limitedSparkState.reason; bool limitedSpark = !limitedSparkState.value; const floatms_t dwellMs = engine->ignitionState.sparkDwell; if (std::isnan(dwellMs) || dwellMs <= 0) { warning(ObdCode::CUSTOM_DWELL, "invalid dwell to handle: %.2f at %d", dwellMs, rpm); return; } if (!engine->ignitionEvents.isReady) { prepareIgnitionSchedule(); } /** * Ignition schedule is defined once per revolution * See initializeIgnitionActions() */ // Only apply odd cylinder count wasted logic if: // - odd cyl count // - current mode is wasted spark // - four stroke bool enableOddCylinderWastedSpark = engine->engineState.useOddFireWastedSpark && getCurrentIgnitionMode() == IM_WASTED_SPARK; if (engine->ignitionEvents.isReady) { for (size_t i = 0; i < engineConfiguration->cylindersCount; i++) { IgnitionEvent *event = &engine->ignitionEvents.elements[i]; angle_t dwellAngle = event->dwellAngle; angle_t sparkAngle = event->sparkAngle; if (std::isnan(sparkAngle)) { warning(ObdCode::CUSTOM_ADVANCE_SPARK, "NaN advance"); continue; } bool isOddCylWastedEvent = false; if (enableOddCylinderWastedSpark) { auto dwellAngleWastedEvent = dwellAngle + 360; if (dwellAngleWastedEvent > 720) { dwellAngleWastedEvent -= 720; } // Check whether this event hits 360 degrees out from now (ie, wasted spark), // and if so, twiddle the dwell and spark angles so it happens now instead isOddCylWastedEvent = isPhaseInRange(dwellAngleWastedEvent, currentPhase, nextPhase); if (isOddCylWastedEvent) { dwellAngle = dwellAngleWastedEvent; sparkAngle += 360; if (sparkAngle > 720) { sparkAngle -= 720; } } } if (!isOddCylWastedEvent && !isPhaseInRange(dwellAngle, currentPhase, nextPhase)) { continue; } if (i == 0 && engineConfiguration->artificialTestMisfire && (getRevolutionCounter() % ((int)engineConfiguration->scriptSetting[5]) == 0)) { // artificial misfire on cylinder #1 for testing purposes // enable artificialMisfire warning(ObdCode::CUSTOM_ARTIFICIAL_MISFIRE, "artificial misfire on cylinder #1 for testing purposes %d", engine->engineState.globalSparkCounter); continue; } #if EFI_LAUNCH_CONTROL bool sparkLimited = engine->softSparkLimiter.shouldSkip() || engine->hardSparkLimiter.shouldSkip(); engine->ignitionState.luaIgnitionSkip = sparkLimited; if (sparkLimited) { continue; } #endif // EFI_LAUNCH_CONTROL #if EFI_ANTILAG_SYSTEM && EFI_LAUNCH_CONTROL /* if (engine->antilagController.isAntilagCondition) { if (engine->ALSsoftSparkLimiter.shouldSkip()) { continue; } } float throttleIntent = Sensor::getOrZero(SensorType::DriverThrottleIntent); engine->antilagController.timingALSSkip = interpolate3d( config->ALSIgnSkipTable, config->alsIgnSkipLoadBins, throttleIntent, config->alsIgnSkiprpmBins, rpm ); auto ALSSkipRatio = engine->antilagController.timingALSSkip; engine->ALSsoftSparkLimiter.setTargetSkipRatio(ALSSkipRatio/100); */ #endif // EFI_ANTILAG_SYSTEM scheduleSparkEvent(limitedSpark, event, rpm, dwellMs, dwellAngle, sparkAngle, edgeTimestamp, currentPhase, nextPhase); } } } /** * Number of sparks per physical coil * @see getNumberOfInjections */ int getNumberOfSparks(ignition_mode_e mode) { switch (mode) { case IM_ONE_COIL: return engineConfiguration->cylindersCount; case IM_TWO_COILS: return engineConfiguration->cylindersCount / 2; case IM_INDIVIDUAL_COILS: return 1; case IM_WASTED_SPARK: return 2; default: firmwareError(ObdCode::CUSTOM_ERR_IGNITION_MODE, "Unexpected ignition_mode_e %d", mode); return 1; } } /** * @see getInjectorDutyCycle */ percent_t getCoilDutyCycle(int rpm) { floatms_t totalPerCycle = engine->ignitionState.sparkDwell * getNumberOfSparks(getCurrentIgnitionMode()); floatms_t engineCycleDuration = getCrankshaftRevolutionTimeMs(rpm) * (getEngineRotationState()->getOperationMode() == TWO_STROKE ? 1 : 2); return 100 * totalPerCycle / engineCycleDuration; } #endif // EFI_ENGINE_CONTROL