/** * @file pwm_generator_logic.cpp * * This PWM implementation keep track of when it would be the next time to toggle the signal. * It constantly sets timer to that next toggle time, then sets the timer again from the callback, and so on. * * @date Mar 2, 2014 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "global.h" #include "os_access.h" #include "pwm_generator_logic.h" #include "perf_trace.h" EXTERN_ENGINE; #if EFI_PROD_CODE #include "mpu_util.h" #include "engine.h" #endif // EFI_PROD_CODE // 1% duty cycle #define ZERO_PWM_THRESHOLD 0.01 SimplePwm::SimplePwm() { waveInstance.init(pinStates); sr[0] = waveInstance; init(_switchTimes, sr); } SimplePwm::SimplePwm(const char *name) : SimplePwm() { this->name = name; } PwmConfig::PwmConfig() { memset((void*)&scheduling, 0, sizeof(scheduling)); memset((void*)&safe, 0, sizeof(safe)); dbgNestingLevel = 0; periodNt = NAN; mode = PM_NORMAL; memset(&outputPins, 0, sizeof(outputPins)); phaseCount = 0; pwmCycleCallback = nullptr; stateChangeCallback = nullptr; executor = nullptr; name = "[noname]"; arg = this; } PwmConfig::PwmConfig(float *st, SingleChannelStateSequence *waves) : PwmConfig() { multiChannelStateSequence.init(st, waves); } void PwmConfig::init(float *st, SingleChannelStateSequence *waves) { multiChannelStateSequence.init(st, waves); } /** * This method allows you to change duty cycle on the fly * @param dutyCycle value between 0 and 1 * See also setFrequency */ void SimplePwm::setSimplePwmDutyCycle(float dutyCycle) { if (isStopRequested) { // we are here in order to not change pin once PWM stop was requested return; } if (cisnan(dutyCycle)) { warning(CUSTOM_DUTY_INVALID, "%s spwd:dutyCycle %.2f", name, dutyCycle); return; } else if (dutyCycle < 0) { warning(CUSTOM_DUTY_TOO_LOW, "%s dutyCycle %.2f", name, dutyCycle); dutyCycle = 0; } else if (dutyCycle > 1) { warning(CUSTOM_PWM_DUTY_TOO_HIGH, "%s duty %.2f", name, dutyCycle); dutyCycle = 1; } #if EFI_PROD_CODE if (hardPwm) { hardPwm->setDuty(dutyCycle); return; } #endif // Handle zero and full duty cycle. This will cause the PWM output to behave like a plain digital output. if (dutyCycle == 0.0f && stateChangeCallback) { // Manually fire falling edge stateChangeCallback(0, arg); } else if (dutyCycle == 1.0f && stateChangeCallback) { // Manually fire rising edge stateChangeCallback(1, arg); } if (dutyCycle < ZERO_PWM_THRESHOLD) { mode = PM_ZERO; } else if (dutyCycle > FULL_PWM_THRESHOLD) { mode = PM_FULL; } else { mode = PM_NORMAL; multiChannelStateSequence.setSwitchTime(0, dutyCycle); } } /** * returns absolute timestamp of state change */ static efitick_t getNextSwitchTimeNt(PwmConfig *state) { efiAssert(CUSTOM_ERR_ASSERT, state->safe.phaseIndex < PWM_PHASE_MAX_COUNT, "phaseIndex range", 0); int iteration = state->safe.iteration; // we handle PM_ZERO and PM_FULL separately float switchTime = state->mode == PM_NORMAL ? state->multiChannelStateSequence.getSwitchTime(state->safe.phaseIndex) : 1; float periodNt = state->safe.periodNt; #if DEBUG_PWM scheduleMsg(&logger, "iteration=%d switchTime=%.2f period=%.2f", iteration, switchTime, period); #endif /* DEBUG_PWM */ /** * Once 'iteration' gets relatively high, we might lose calculation precision here. * This is addressed by iterationLimit below, using any many cycles as possible without overflowing timeToSwitchNt */ uint32_t timeToSwitchNt = (uint32_t)((iteration + switchTime) * periodNt); #if DEBUG_PWM scheduleMsg(&logger, "start=%d timeToSwitch=%d", state->safe.start, timeToSwitch); #endif /* DEBUG_PWM */ return state->safe.startNt + timeToSwitchNt; } void PwmConfig::setFrequency(float frequency) { if (cisnan(frequency)) { // explicit code just to be sure periodNt = NAN; return; } /** * see #handleCycleStart() */ periodNt = US2NT(frequency2periodUs(frequency)); } void PwmConfig::stop() { isStopRequested = true; } void PwmConfig::handleCycleStart() { if (safe.phaseIndex != 0) { // https://github.com/rusefi/rusefi/issues/1030 firmwareError(CUSTOM_PWM_CYCLE_START, "handleCycleStart %d", safe.phaseIndex); return; } if (pwmCycleCallback != NULL) { pwmCycleCallback(this); } // Compute the maximum number of iterations without overflowing a uint32_t worth of timestamp uint32_t iterationLimit = (0xFFFFFFFF / periodNt) - 2; efiAssertVoid(CUSTOM_ERR_6580, periodNt != 0, "period not initialized"); efiAssertVoid(CUSTOM_ERR_6580, iterationLimit > 0, "iterationLimit invalid"); if (safe.periodNt != periodNt || safe.iteration == iterationLimit) { /** * period length has changed - we need to reset internal state */ safe.startNt = getTimeNowNt(); safe.iteration = 0; safe.periodNt = periodNt; #if DEBUG_PWM scheduleMsg(&logger, "state reset start=%d iteration=%d", state->safe.start, state->safe.iteration); #endif } } /** * @return Next time for signal toggle */ efitick_t PwmConfig::togglePwmState() { if (isStopRequested) { return 0; } #if DEBUG_PWM scheduleMsg(&logger, "togglePwmState phaseIndex=%d iteration=%d", safe.phaseIndex, safe.iteration); scheduleMsg(&logger, "period=%.2f safe.period=%.2f", period, safe.periodNt); #endif if (cisnan(periodNt)) { /** * NaN period means PWM is paused, we also set the pin low */ stateChangeCallback(0, arg); return getTimeNowNt() + MS2NT(NAN_FREQUENCY_SLEEP_PERIOD_MS); } if (mode != PM_NORMAL) { // in case of ZERO or FULL we are always at starting index safe.phaseIndex = 0; } if (safe.phaseIndex == 0) { handleCycleStart(); } /** * Here is where the 'business logic' - the actual pin state change is happening */ int cbStateIndex; if (mode == PM_NORMAL) { // callback state index is offset by one. todo: why? can we simplify this? cbStateIndex = safe.phaseIndex == 0 ? phaseCount - 1 : safe.phaseIndex - 1; } else if (mode == PM_ZERO) { cbStateIndex = 0; } else { cbStateIndex = 1; } { ScopePerf perf(PE::PwmConfigStateChangeCallback); stateChangeCallback(cbStateIndex, arg); } efitick_t nextSwitchTimeNt = getNextSwitchTimeNt(this); #if DEBUG_PWM scheduleMsg(&logger, "%s: nextSwitchTime %d", state->name, nextSwitchTime); #endif /* DEBUG_PWM */ safe.phaseIndex++; if (safe.phaseIndex == phaseCount || mode != PM_NORMAL) { safe.phaseIndex = 0; // restart safe.iteration++; } #if EFI_UNIT_TEST printf("PWM: nextSwitchTimeNt=%d phaseIndex=%d iteration=%d\r\n", nextSwitchTimeNt, safe.phaseIndex, safe.iteration); #endif /* EFI_UNIT_TEST */ return nextSwitchTimeNt; } /** * Main PWM loop: toggle pin & schedule next invocation * * First invocation happens on application thread */ static void timerCallback(PwmConfig *state) { ScopePerf perf(PE::PwmGeneratorCallback); state->dbgNestingLevel++; efiAssertVoid(CUSTOM_ERR_6581, state->dbgNestingLevel < 25, "PWM nesting issue"); efitick_t switchTimeNt = state->togglePwmState(); if (switchTimeNt == 0) { // we are here when PWM gets stopped return; } if (state->executor == nullptr) { firmwareError(CUSTOM_NULL_EXECUTOR, "exec on %s", state->name); return; } state->executor->scheduleByTimestampNt(&state->scheduling, switchTimeNt, { timerCallback, state }); state->dbgNestingLevel--; } /** * Incoming parameters are potentially just values on current stack, so we have to copy * into our own permanent storage, right? */ void copyPwmParameters(PwmConfig *state, int phaseCount, float const *switchTimes, int waveCount, pin_state_t *const *pinStates) { state->phaseCount = phaseCount; for (int phaseIndex = 0; phaseIndex < phaseCount; phaseIndex++) { state->multiChannelStateSequence.setSwitchTime(phaseIndex, switchTimes[phaseIndex]); for (int channelIndex = 0; channelIndex < waveCount; channelIndex++) { // print("output switch time index (%d/%d) at %.2f to %d\r\n", phaseIndex, channelIndex, // switchTimes[phaseIndex], pinStates[waveIndex][phaseIndex]); pin_state_t value = pinStates[channelIndex][phaseIndex]; state->multiChannelStateSequence.channels[channelIndex].setState(phaseIndex, value); } } if (state->mode == PM_NORMAL) { state->multiChannelStateSequence.checkSwitchTimes(phaseCount, 1); } } /** * this method also starts the timer cycle * See also startSimplePwm */ void PwmConfig::weComplexInit(const char *msg, ExecutorInterface *executor, const int phaseCount, float const *switchTimes, const int waveCount, pin_state_t *const*pinStates, pwm_cycle_callback *pwmCycleCallback, pwm_gen_callback *stateChangeCallback) { UNUSED(msg); this->executor = executor; isStopRequested = false; efiAssertVoid(CUSTOM_ERR_6582, periodNt != 0, "period is not initialized"); if (phaseCount == 0) { firmwareError(CUSTOM_ERR_PWM_1, "signal length cannot be zero"); return; } if (phaseCount > PWM_PHASE_MAX_COUNT) { firmwareError(CUSTOM_ERR_PWM_2, "too many phases in PWM"); return; } efiAssertVoid(CUSTOM_ERR_6583, waveCount > 0, "waveCount should be positive"); this->pwmCycleCallback = pwmCycleCallback; this->stateChangeCallback = stateChangeCallback; multiChannelStateSequence.waveCount = waveCount; copyPwmParameters(this, phaseCount, switchTimes, waveCount, pinStates); safe.phaseIndex = 0; safe.periodNt = -1; safe.iteration = -1; // let's start the indefinite callback loop of PWM generation timerCallback(this); } void startSimplePwm(SimplePwm *state, const char *msg, ExecutorInterface *executor, OutputPin *output, float frequency, float dutyCycle, pwm_gen_callback *stateChangeCallback) { efiAssertVoid(CUSTOM_ERR_PWM_STATE_ASSERT, state != NULL, "state"); efiAssertVoid(CUSTOM_ERR_PWM_DUTY_ASSERT, dutyCycle >= 0 && dutyCycle <= 1, "dutyCycle"); efiAssertVoid(CUSTOM_ERR_PWM_CALLBACK_ASSERT, stateChangeCallback != NULL, "listener"); if (frequency < 1) { warning(CUSTOM_OBD_LOW_FREQUENCY, "low frequency %.2f", frequency); return; } float switchTimes[] = { dutyCycle, 1 }; pin_state_t pinStates0[] = { TV_FALL, TV_RISE }; state->setSimplePwmDutyCycle(dutyCycle); pin_state_t *pinStates[1] = { pinStates0 }; state->outputPins[0] = output; state->setFrequency(frequency); state->weComplexInit(msg, executor, 2, switchTimes, 1, pinStates, NULL, stateChangeCallback); } void startSimplePwmExt(SimplePwm *state, const char *msg, ExecutorInterface *executor, brain_pin_e brainPin, OutputPin *output, float frequency, float dutyCycle, pwm_gen_callback *stateChangeCallback) { output->initPin(msg, brainPin); startSimplePwm(state, msg, executor, output, frequency, dutyCycle, stateChangeCallback); } void startSimplePwmHard(SimplePwm *state, const char *msg, ExecutorInterface *executor, brain_pin_e brainPin, OutputPin *output, float frequency, float dutyCycle) { #if EFI_PROD_CODE && HAL_USE_PWM auto hardPwm = hardware_pwm::tryInitPin(msg, brainPin, frequency, dutyCycle); if (hardPwm) { state->hardPwm = hardPwm; } else { #endif startSimplePwmExt(state, msg, executor, brainPin, output, frequency, dutyCycle); #if EFI_PROD_CODE && HAL_USE_PWM } #endif } /** * This method controls the actual hardware pins * * This method takes ~350 ticks. */ void applyPinState(int stateIndex, PwmConfig *state) /* pwm_gen_callback */ { #if EFI_PROD_CODE if (!engine->isPwmEnabled) { for (int channelIndex = 0; channelIndex < state->multiChannelStateSequence.waveCount; channelIndex++) { OutputPin *output = state->outputPins[channelIndex]; output->setValue(0); } return; } #endif // EFI_PROD_CODE efiAssertVoid(CUSTOM_ERR_6663, stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex"); efiAssertVoid(CUSTOM_ERR_6664, state->multiChannelStateSequence.waveCount <= PWM_PHASE_MAX_WAVE_PER_PWM, "invalid waveCount"); for (int channelIndex = 0; channelIndex < state->multiChannelStateSequence.waveCount; channelIndex++) { OutputPin *output = state->outputPins[channelIndex]; int value = state->multiChannelStateSequence.getChannelState(channelIndex, stateIndex); output->setValue(value); } }