/** * @file electronic_throttle.cpp * @brief Electronic Throttle driver * * @see test test_etb.cpp * * * Limited user documentation at https://github.com/rusefi/rusefi/wiki/HOWTO_electronic_throttle_body * * * ETB is controlled according to pedal position input (pedal position sensor is a potentiometer) * pedal 0% means pedal not pressed / idle * pedal 100% means pedal all the way down * (not TPS - not the one you can calibrate in TunerStudio) * * * See also pid.cpp * * Relevant console commands: * * ETB_BENCH_ENGINE * set engine_type 58 * * enable verbose_etb * disable verbose_etb * etbinfo * * http://rusefi.com/forum/viewtopic.php?f=5&t=592 * * @date Dec 7, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "pch.h" #include "electronic_throttle_impl.h" #if EFI_ELECTRONIC_THROTTLE_BODY #include "dc_motor.h" #include "dc_motors.h" #include "defaults.h" #if defined(HAS_OS_ACCESS) #error "Unexpected OS ACCESS HERE" #endif #if HW_PROTEUS #include "proteus_meta.h" #endif // HW_PROTEUS #ifndef ETB_MAX_COUNT #define ETB_MAX_COUNT 2 #endif /* ETB_MAX_COUNT */ static pedal2tps_t pedal2tpsMap{"p2t"}; static Map3D throttle2TrimTable{"t2t"}; static Map3D tcEtbDropTable{"tce"}; constexpr float etbPeriodSeconds = 1.0f / ETB_LOOP_FREQUENCY; //static bool startupPositionError = false; //#define STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD 5 static const float hardCodedetbHitachiBiasBins[8] = {0.0, 19.0, 21.0, 22.0, 23.0, 25.0, 30.0, 100.0}; static const float hardCodedetbHitachiBiasValues[8] = {-18.0, -17.0, -15.0, 0.0, 16.0, 20.0, 20.0, 20.0}; /* Generated by TS2C on Thu Aug 20 21:10:02 EDT 2020*/ void setHitachiEtbBiasBins() { copyArray(config->etbBiasBins, hardCodedetbHitachiBiasBins); copyArray(config->etbBiasValues, hardCodedetbHitachiBiasValues); } static SensorType functionToPositionSensor(dc_function_e func) { switch(func) { case DC_Throttle1: return SensorType::Tps1; case DC_Throttle2: return SensorType::Tps2; case DC_IdleValve: return SensorType::IdlePosition; case DC_Wastegate: return SensorType::WastegatePosition; default: return SensorType::Invalid; } } static SensorType functionToTpsSensor(dc_function_e func) { switch(func) { case DC_Throttle1: return SensorType::Tps1; default: return SensorType::Tps2; } } static SensorType functionToTpsSensorPrimary(dc_function_e func) { switch(func) { case DC_Throttle1: return SensorType::Tps1Primary; default: return SensorType::Tps2Primary; } } static SensorType functionToTpsSensorSecondary(dc_function_e func) { switch(func) { case DC_Throttle1: return SensorType::Tps1Secondary; default: return SensorType::Tps2Secondary; } } #if EFI_TUNER_STUDIO static TsCalMode functionToCalModePriMin(dc_function_e func) { switch (func) { case DC_Throttle1: return TsCalMode::Tps1Min; default: return TsCalMode::Tps2Min; } } static TsCalMode functionToCalModePriMax(dc_function_e func) { switch (func) { case DC_Throttle1: return TsCalMode::Tps1Max; default: return TsCalMode::Tps2Max; } } static TsCalMode functionToCalModeSecMin(dc_function_e func) { switch (func) { case DC_Throttle1: return TsCalMode::Tps1SecondaryMin; default: return TsCalMode::Tps2SecondaryMin; } } static TsCalMode functionToCalModeSecMax(dc_function_e func) { switch (func) { case DC_Throttle1: return TsCalMode::Tps1SecondaryMax; default: return TsCalMode::Tps2SecondaryMax; } } #endif // EFI_TUNER_STUDIO static percent_t directPwmValue = NAN; #define ETB_DUTY_LIMIT 0.9 // this macro clamps both positive and negative percentages from about -100% to 100% #define ETB_PERCENT_TO_DUTY(x) (clampF(-ETB_DUTY_LIMIT, 0.01f * (x), ETB_DUTY_LIMIT)) bool EtbController::init(dc_function_e function, DcMotor *motor, pid_s *pidParameters, const ValueProvider3D* pedalProvider, bool hasPedal) { if (function == DC_None) { // if not configured, don't init. etbErrorCode = (int8_t)TpsState::None; return false; } m_function = function; m_positionSensor = functionToPositionSensor(function); // If we are a throttle, require redundant TPS sensor if (isEtbMode()) { // We don't need to init throttles, so nothing to do here. if (!hasPedal) { etbErrorCode = (int8_t)TpsState::None; return false; } // If no sensor is configured for this throttle, skip initialization. if (!Sensor::hasSensor(functionToTpsSensor(function))) { etbErrorCode = (int8_t)TpsState::TpsError; return false; } if (!Sensor::isRedundant(m_positionSensor)) { firmwareError( ObdCode::OBD_TPS_Configuration, "Use of electronic throttle requires %s to be redundant.", Sensor::getSensorName(m_positionSensor) ); etbErrorCode = (int8_t)TpsState::Redundancy; return false; } if (!Sensor::isRedundant(SensorType::AcceleratorPedal)) { firmwareError( ObdCode::OBD_TPS_Configuration, "Use of electronic throttle requires accelerator pedal to be redundant." ); etbErrorCode = (int8_t)TpsState::Redundancy; return false; } } m_motor = motor; m_pid.initPidClass(pidParameters); m_pedalProvider = pedalProvider; // Ignore 3% position error before complaining m_errorAccumulator.init(3.0f, etbPeriodSeconds); reset(); return true; } void EtbController::reset() { m_shouldResetPid = true; etbDutyRateOfChange = etbDutyAverage = 0; m_dutyRocAverage.reset(); m_dutyAverage.reset(); etbTpsErrorCounter = 0; etbPpsErrorCounter = 0; } void EtbController::onConfigurationChange(pid_s* previousConfiguration) { if (m_motor && !m_pid.isSame(previousConfiguration)) { m_shouldResetPid = true; } m_dutyRocAverage.init(engineConfiguration->etbRocExpAverageLength); m_dutyAverage.init(engineConfiguration->etbExpAverageLength); doInitElectronicThrottle(); } void EtbController::showStatus() { m_pid.showPidStatus("ETB"); } expected EtbController::observePlant() { return Sensor::get(m_positionSensor); } void EtbController::setIdlePosition(percent_t pos) { m_idlePosition = pos; } void EtbController::setWastegatePosition(percent_t pos) { m_wastegatePosition = pos; } expected EtbController::getSetpoint() { switch (m_function) { case DC_Throttle1: case DC_Throttle2: return getSetpointEtb(); case DC_IdleValve: return getSetpointIdleValve(); case DC_Wastegate: return getSetpointWastegate(); default: return unexpected; } } expected EtbController::getSetpointIdleValve() const { // VW ETB idle mode uses an ETB only for idle (a mini-ETB sets the lower stop, and a normal cable // can pull the throttle up off the stop.), so we directly control the throttle with the idle position. #if EFI_TUNER_STUDIO && (EFI_PROD_CODE || EFI_SIMULATOR) engine->outputChannels.etbTarget = m_idlePosition; #endif // EFI_TUNER_STUDIO return clampPercentValue(m_idlePosition); } expected EtbController::getSetpointWastegate() const { return clampPercentValue(m_wastegatePosition); } float getSanitizedPedal() { auto pedalPosition = Sensor::get(SensorType::AcceleratorPedal); // If the pedal has failed, just use 0 position. // This is safer than disabling throttle control - we can at least push the throttle closed // and let the engine idle. return clampPercentValue(pedalPosition.value_or(0)); } BOARD_WEAK float boardAdjustEtbTarget(float currentEtbTarget) { return currentEtbTarget; } expected EtbController::getSetpointEtb() { // Autotune runs with 50% target position if (m_isAutotune) { return 50.0f; } // // A few extra preconditions if throttle control is invalid // if (startupPositionError) { // return unexpected; // } // If the pedal map hasn't been set, we can't provide a setpoint. if (!m_pedalProvider) { return unexpected; } float sanitizedPedal = getSanitizedPedal(); float rpm = Sensor::getOrZero(SensorType::Rpm); etbCurrentTarget = m_pedalProvider->getValue(rpm, sanitizedPedal); percent_t etbIdlePosition = clampPercentValue(m_idlePosition); percent_t etbIdleAddition = PERCENT_DIV * engineConfiguration->etbIdleThrottleRange * etbIdlePosition; // Interpolate so that the idle adder just "compresses" the throttle's range upward. // [0, 100] -> [idle, 100] // 0% target from table -> idle position as target // 100% target from table -> 100% target position targetWithIdlePosition = interpolateClamped(0, etbIdleAddition, 100, 100, etbCurrentTarget); percent_t targetPosition = boardAdjustEtbTarget(targetWithIdlePosition + getLuaAdjustment()); #if EFI_ANTILAG_SYSTEM if (engine->antilagController.isAntilagCondition) { targetPosition += engineConfiguration->ALSEtbAdd; } #endif /* EFI_ANTILAG_SYSTEM */ float vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed); float wheelSlip = Sensor::getOrZero(SensorType::WheelSlipRatio); tcEtbDrop = tcEtbDropTable.getValue(wheelSlip, vehicleSpeed); // Apply any adjustment that this throttle alone needs // Clamped to +-10 to prevent anything too wild trim = clampF(-10, getThrottleTrim(rpm, targetPosition), 10); targetPosition += trim + tcEtbDrop; // Clamp before rev limiter to avoid ineffective rev limit due to crazy out of range position target targetPosition = clampPercentValue(targetPosition); // Lastly, apply ETB rev limiter auto etbRpmLimit = engineConfiguration->etbRevLimitStart; if (etbRpmLimit != 0) { auto fullyLimitedRpm = etbRpmLimit + engineConfiguration->etbRevLimitRange; float targetPositionBefore = targetPosition; // Linearly taper throttle to closed from the limit across the range targetPosition = interpolateClamped(etbRpmLimit, targetPosition, fullyLimitedRpm, 0, rpm); // rev limit active if the position was changed by rev limiter etbRevLimitActive = absF(targetPosition - targetPositionBefore) > 0.1f; } float minPosition = engineConfiguration->etbMinimumPosition; // Keep the throttle just barely off the lower stop, and less than the user-configured maximum float maxPosition = engineConfiguration->etbMaximumPosition; // Don't allow max position over 100 maxPosition = minF(maxPosition, 100); targetPosition = clampF(minPosition, targetPosition, maxPosition); etbCurrentAdjustedTarget = targetPosition; #if EFI_TUNER_STUDIO if (m_function == DC_Throttle1) { engine->outputChannels.etbTarget = targetPosition; } #endif // EFI_TUNER_STUDIO return targetPosition; } void EtbController::setLuaAdjustment(float adjustment) { luaAdjustment = adjustment; m_luaAdjustmentTimer.reset(); } /** * positive adjustment opens TPS, negative closes TPS */ float EtbController::getLuaAdjustment() const { // If the lua position hasn't been set in 0.2 second, don't adjust! // This avoids a stuck throttle due to hung/rogue/etc Lua script if (m_luaAdjustmentTimer.getElapsedSeconds() > 0.2f) { return 0; } else { return luaAdjustment; } } percent_t EtbController2::getThrottleTrim(float rpm, percent_t targetPosition) const { return m_throttle2Trim.getValue(rpm, targetPosition); } expected EtbController::getOpenLoop(percent_t target) { // Don't apply open loop for wastegate/idle valve, only real ETB if (m_function != DC_Wastegate && m_function != DC_IdleValve) { etbFeedForward = interpolate2d(target, config->etbBiasBins, config->etbBiasValues); } else { etbFeedForward = 0; } return etbFeedForward; } expected EtbController::getClosedLoopAutotune(percent_t target, percent_t actualThrottlePosition) { // Estimate gain at current position - this should be well away from the spring and in the linear region // GetSetpoint sets this to 50% bool isPositive = actualThrottlePosition > target; float autotuneAmplitude = 20; // End of cycle - record & reset if (!isPositive && m_lastIsPositive) { efitick_t now = getTimeNowNt(); // Determine period float tu = m_autotuneCycleStart.getElapsedSecondsAndReset(now); // Determine amplitude float a = m_maxCycleTps - m_minCycleTps; // Filter - it's pretty noisy since the ultimate period is not very many loop periods constexpr float alpha = 0.05; m_a = alpha * a + (1 - alpha) * m_a; m_tu = alpha * tu + (1 - alpha) * m_tu; // Reset bounds m_minCycleTps = 100; m_maxCycleTps = 0; // Math is for Åström–Hägglund (relay) auto tuning // https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume5issue2/hornsey // Publish to TS state #if EFI_TUNER_STUDIO // Amplitude of input (duty cycle %) float b = 2 * autotuneAmplitude; // Ultimate gain per A-H relay tuning rule float ku = 4 * b / (CONST_PI * m_a); // The multipliers below are somewhere near the "no overshoot" // and "some overshoot" flavors of the Ziegler-Nichols method // Kp float kp = 0.35f * ku; float ki = 0.25f * ku / m_tu; float kd = 0.08f * ku * m_tu; // Every 5 cycles (of the throttle), cycle to the next value if (m_autotuneCounter >= 5) { m_autotuneCounter = 0; m_autotuneCurrentParam = (m_autotuneCurrentParam + 1) % 3; // three ETB calibs: P-I-D } m_autotuneCounter++; // Multiplex 3 signals on to the {mode, value} format engine->outputChannels.calibrationMode = (uint8_t)static_cast((uint8_t)TsCalMode::EtbKp + m_autotuneCurrentParam); switch (m_autotuneCurrentParam) { case 0: engine->outputChannels.calibrationValue = kp; break; case 1: engine->outputChannels.calibrationValue = ki; break; case 2: engine->outputChannels.calibrationValue = kd; break; } // Also output to debug channels if configured if (engineConfiguration->debugMode == DBG_ETB_AUTOTUNE) { // a - amplitude of output (TPS %) engine->outputChannels.debugFloatField1 = m_a; // b - amplitude of input (Duty cycle %) engine->outputChannels.debugFloatField2 = b; // Tu - oscillation period (seconds) engine->outputChannels.debugFloatField3 = m_tu; engine->outputChannels.debugFloatField4 = ku; engine->outputChannels.debugFloatField5 = kp; engine->outputChannels.debugFloatField6 = ki; engine->outputChannels.debugFloatField7 = kd; } #endif } m_lastIsPositive = isPositive; // Find the min/max of each cycle if (actualThrottlePosition < m_minCycleTps) { m_minCycleTps = actualThrottlePosition; } if (actualThrottlePosition > m_maxCycleTps) { m_maxCycleTps = actualThrottlePosition; } // Bang-bang control the output to induce oscillation return autotuneAmplitude * (isPositive ? -1 : 1); } expected EtbController::getClosedLoop(percent_t target, percent_t observation) { if (m_shouldResetPid) { m_pid.reset(); m_shouldResetPid = false; } if (m_isAutotune) { return getClosedLoopAutotune(target, observation); } else { // Check that we're not over the error limit etbIntegralError = m_errorAccumulator.accumulate(target - observation); // Allow up to 10 percent-seconds of error if (etbIntegralError > 10.0f) { // TODO: figure out how to handle uncalibrated ETB //getLimpManager()->reportEtbProblem(); } // Normal case - use PID to compute closed loop part return m_pid.getOutput(target, observation, etbPeriodSeconds); } } void EtbController::setOutput(expected outputValue) { #if EFI_TUNER_STUDIO // Only report first-throttle stats if (m_function == DC_Throttle1) { engine->outputChannels.etb1DutyCycle = outputValue.value_or(0); } #endif if (!m_motor) { return; } // If not ETB, or ETB is allowed, output is valid, and we aren't paused, output to motor. if (!isEtbMode() || (getLimpManager()->allowElectronicThrottle() && outputValue && !engineConfiguration->pauseEtbControl)) { m_motor->enable(); m_motor->set(ETB_PERCENT_TO_DUTY(outputValue.Value)); } else { // Otherwise disable the motor. m_motor->disable("no-ETB"); } } bool EtbController::checkStatus() { #if EFI_TUNER_STUDIO // Only debug throttle #1 if (m_function == DC_Throttle1) { m_pid.postState(engine->outputChannels.etbStatus); } else if (m_function == DC_Wastegate) { m_pid.postState(engine->outputChannels.wastegateDcStatus); } #endif /* EFI_TUNER_STUDIO */ if (!isEtbMode()) { // no validation for h-bridge or idle mode return true; } // ETB-specific code belo. The whole mix-up between DC and ETB is shameful :( m_pid.iTermMin = engineConfiguration->etb_iTermMin; m_pid.iTermMax = engineConfiguration->etb_iTermMax; // Only allow autotune with stopped engine, and on the first throttle // Update local state about autotune m_isAutotune = Sensor::getOrZero(SensorType::Rpm) == 0 && engine->etbAutoTune && m_function == DC_Throttle1; bool shouldCheckSensorFunction = engine->module()->analogSensorsShouldWork(); if (!m_isAutotune && shouldCheckSensorFunction) { bool isTpsError = !Sensor::get(m_positionSensor).Valid; // If we have an error that's new, increment the counter if (isTpsError && !hadTpsError) { etbTpsErrorCounter++; } hadTpsError = isTpsError; bool isPpsError = !Sensor::get(SensorType::AcceleratorPedal).Valid; // If we have an error that's new, increment the counter if (isPpsError && !hadPpsError) { etbPpsErrorCounter++; } hadPpsError = isPpsError; } else { // Either sensors are expected to not work, or autotune is running, so reset the error counter etbTpsErrorCounter = 0; etbPpsErrorCounter = 0; } #ifndef ETB_INTERMITTENT_LIMIT #define ETB_INTERMITTENT_LIMIT 50 #endif TpsState localReason = TpsState::None; if (etbTpsErrorCounter > ETB_INTERMITTENT_LIMIT) { localReason = TpsState::IntermittentTps; #if EFI_SHAFT_POSITION_INPUT } else if (engineConfiguration->disableEtbWhenEngineStopped && !engine->triggerCentral.engineMovedRecently()) { localReason = TpsState::EngineStopped; #endif // EFI_SHAFT_POSITION_INPUT } else if (etbPpsErrorCounter > ETB_INTERMITTENT_LIMIT) { localReason = TpsState::IntermittentPps; } else if (engine->engineState.lua.luaDisableEtb) { localReason = TpsState::Lua; } etbErrorCode = (int8_t)localReason; return localReason == TpsState::None; } void EtbController::update() { #if !EFI_UNIT_TEST // If we didn't get initialized, fail fast if (!m_motor) { return; } #endif // EFI_UNIT_TEST if (!cisnan(directPwmValue)) { m_motor->set(directPwmValue); etbErrorCode = (int8_t)TpsState::Manual; return; } bool isOk = checkStatus(); if (!isOk) { // If engine is stopped and so configured, skip the ETB update entirely // This is quieter and pulls less power than leaving it on all the time m_motor->disable("etb status"); return; } auto output = ClosedLoopController::update(); if (!output) { return; } checkOutput(output.Value); } void EtbController::checkOutput(percent_t output) { etbDutyAverage = m_dutyAverage.average(absF(output)); etbDutyRateOfChange = m_dutyRocAverage.average(absF(output - prevOutput)); prevOutput = output; #if EFI_UNIT_TEST auto integratorLimit = engineConfiguration->etbJamIntegratorLimit; if (integratorLimit != 0) { float integrator = absF(m_pid.getIntegration()); auto nowNt = getTimeNowNt(); if (integrator > integratorLimit) { if (m_jamDetectTimer.hasElapsedSec(engineConfiguration->etbJamTimeout)) { // ETB is jammed! jamDetected = true; // TODO: do something about it! } } else { m_jamDetectTimer.reset(getTimeNowNt()); jamDetected = false; } jamTimer = m_jamDetectTimer.getElapsedSeconds(nowNt); } #endif // EFI_UNIT_TEST } void EtbController::autoCalibrateTps() { // Only auto calibrate throttles if (m_function == DC_Throttle1 || m_function == DC_Throttle2) { m_isAutocal = true; } } #if !EFI_UNIT_TEST /** * Things running on a timer (instead of a thread) don't participate it the RTOS's thread priority system, * and operate essentially "first come first serve", which risks starvation. * Since ETB is a safety critical device, we need the hard RTOS guarantee that it will be scheduled over other less important tasks. */ #include "periodic_thread_controller.h" #else #define chThdSleepMilliseconds(x) {} #endif // EFI_UNIT_TEST #include template struct EtbImpl final : public TBase { template EtbImpl(TArgs&&... args) : TBase(std::forward(args)...) { } void update() override { #if EFI_TUNER_STUDIO if (TBase::m_isAutocal) { // Don't allow if engine is running! if (Sensor::getOrZero(SensorType::Rpm) > 0) { TBase::m_isAutocal = false; return; } auto motor = TBase::getMotor(); if (!motor) { TBase::m_isAutocal = false; return; } auto myFunction = TBase::getFunction(); // First grab open motor->set(0.5f); motor->enable(); chThdSleepMilliseconds(1000); float primaryMax = Sensor::getRaw(functionToTpsSensorPrimary(myFunction)); float secondaryMax = Sensor::getRaw(functionToTpsSensorSecondary(myFunction)); // Let it return motor->set(0); chThdSleepMilliseconds(200); // Now grab closed motor->set(-0.5f); chThdSleepMilliseconds(1000); float primaryMin = Sensor::getRaw(functionToTpsSensorPrimary(myFunction)); float secondaryMin = Sensor::getRaw(functionToTpsSensorSecondary(myFunction)); // Finally disable and reset state motor->disable("autotune"); // Check that the calibrate actually moved the throttle if (absF(primaryMax - primaryMin) < 0.5f) { firmwareError(ObdCode::OBD_TPS_Configuration, "Auto calibrate failed, check your wiring!\r\nClosed voltage: %.1fv Open voltage: %.1fv", primaryMin, primaryMax); TBase::m_isAutocal = false; return; } // Write out the learned values to TS, waiting briefly after setting each to let TS grab it engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMax(myFunction); engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(primaryMax); chThdSleepMilliseconds(500); engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMin(myFunction); engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(primaryMin); chThdSleepMilliseconds(500); engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMax(myFunction); engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(secondaryMax); chThdSleepMilliseconds(500); engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMin(myFunction); engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(secondaryMin); chThdSleepMilliseconds(500); engine->outputChannels.calibrationMode = (uint8_t)TsCalMode::None; TBase::m_isAutocal = false; return; } #endif /* EFI_TUNER_STUDIO */ TBase::update(); } }; // real implementation (we mock for some unit tests) static EtbImpl etb1; static EtbImpl etb2(throttle2TrimTable); static_assert(ETB_COUNT == 2); static EtbController* etbControllers[] = { &etb1, &etb2 }; #if !EFI_UNIT_TEST struct DcThread final : public PeriodicController<512> { DcThread() : PeriodicController("DC", PRIO_ETB, ETB_LOOP_FREQUENCY) {} void PeriodicTask(efitick_t) override { // Simply update all controllers for (int i = 0 ; i < ETB_COUNT; i++) { etbControllers[i]->update(); } } }; static DcThread dcThread CCM_OPTIONAL; #endif // !EFI_UNIT_TEST void etbPidReset() { for (int i = 0 ; i < ETB_COUNT; i++) { if (auto controller = engine->etbControllers[i]) { controller->reset(); } } } #if !EFI_UNIT_TEST /** * At the moment there are TWO ways to use this * set_etb_duty X * set etb X * manual duty cycle control without PID. Percent value from 0 to 100 */ void setThrottleDutyCycle(percent_t level) { efiPrintf("setting ETB duty=%f%%", level); if (cisnan(level)) { directPwmValue = NAN; return; } float dc = ETB_PERCENT_TO_DUTY(level); directPwmValue = dc; for (int i = 0 ; i < ETB_COUNT; i++) { setDcMotorDuty(i, dc); } efiPrintf("duty ETB duty=%f", dc); } #endif /* EFI_PROD_CODE */ void etbAutocal(size_t throttleIndex) { if (throttleIndex >= ETB_COUNT) { return; } if (auto etb = engine->etbControllers[throttleIndex]) { etb->autoCalibrateTps(); } } /** * This specific throttle has default position of about 7% open */ static const float boschBiasBins[] = { 0, 1, 5, 7, 14, 65, 66, 100 }; static const float boschBiasValues[] = { -15, -15, -10, 0, 19, 20, 26, 28 }; void setBoschVAGETB() { engineConfiguration->tpsMin = 890; // convert 12to10 bit (ADC/4) engineConfiguration->tpsMax = 70; // convert 12to10 bit (ADC/4) engineConfiguration->tps1SecondaryMin = 102; engineConfiguration->tps1SecondaryMax = 891; engineConfiguration->etb.pFactor = 5.12; engineConfiguration->etb.iFactor = 47; engineConfiguration->etb.dFactor = 0.088; engineConfiguration->etb.offset = 0; } void setBoschVNH2SP30Curve() { copyArray(config->etbBiasBins, boschBiasBins); copyArray(config->etbBiasValues, boschBiasValues); } void setDefaultEtbParameters() { engineConfiguration->etbIdleThrottleRange = 15; engineConfiguration->etbExpAverageLength = 50; engineConfiguration->etbRocExpAverageLength = 50; setLinearCurve(config->pedalToTpsPedalBins, /*from*/0, /*to*/100, 1); setRpmTableBin(config->pedalToTpsRpmBins); for (int pedalIndex = 0;pedalIndexpedalToTpsTable[pedalIndex][rpmIndex] = config->pedalToTpsPedalBins[pedalIndex]; } } // Default is to run each throttle off its respective hbridge engineConfiguration->etbFunctions[0] = DC_Throttle1; engineConfiguration->etbFunctions[1] = DC_Throttle2; engineConfiguration->etbFreq = DEFAULT_ETB_PWM_FREQUENCY; // voltage, not ADC like with TPS setPPSCalibration(0, 5, 5, 0); engineConfiguration->etb = { 1, // Kp 10, // Ki 0.05, // Kd 0, // offset 0, // Update rate, unused -100, 100 // min/max }; engineConfiguration->etb_iTermMin = -30; engineConfiguration->etb_iTermMax = 30; } void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration) { for (int i = 0; i < ETB_COUNT; i++) { etbControllers[i]->onConfigurationChange(&previousConfiguration->etb); } } static const float defaultBiasBins[] = { 0, 1, 2, 4, 7, 98, 99, 100 }; static const float defaultBiasValues[] = { -20, -18, -17, 0, 20, 21, 22, 25 }; void setDefaultEtbBiasCurve() { copyArray(config->etbBiasBins, defaultBiasBins); copyArray(config->etbBiasValues, defaultBiasValues); } void unregisterEtbPins() { // todo: we probably need an implementation here?! } static pid_s* getPidForDcFunction(dc_function_e function) { switch (function) { case DC_Wastegate: return &engineConfiguration->etbWastegatePid; default: return &engineConfiguration->etb; } } BOARD_WEAK ValueProvider3D* pedal2TpsProvider() { return &pedal2tpsMap; } void doInitElectronicThrottle() { bool hasPedal = Sensor::hasSensor(SensorType::AcceleratorPedalPrimary); #if EFI_UNIT_TEST printf("doInitElectronicThrottle %s\n", boolToString(hasPedal)); #endif // EFI_UNIT_TEST // these status flags are consumed by TS see tunerstudio.template.ini TODO should those be outputs/live data not configuration?! engineConfiguration->etb1configured = engineConfiguration->etb2configured = false; // todo: technical debt: we still have DC motor code initialization in ETB-specific file while DC motors are used not just as ETB // like DC motor wastegate code flow should probably NOT go through electronic_throttle.cpp right? // todo: rename etbFunctions to something-without-etb for same reason? for (int i = 0 ; i < ETB_COUNT; i++) { auto func = engineConfiguration->etbFunctions[i]; if (func == DC_None) { // do not touch HW pins if function not selected, this way Lua can use DC motor hardware pins directly continue; } auto motor = initDcMotor("ETB disable", engineConfiguration->etbIo[i], i, engineConfiguration->etb_use_two_wires); auto controller = engine->etbControllers[i]; criticalAssertVoid(controller != nullptr, "null ETB"); auto pid = getPidForDcFunction(func); bool dcConfigured = controller->init(func, motor, pid, pedal2TpsProvider(), hasPedal); bool etbConfigured = dcConfigured && controller->isEtbMode(); if (i == 0) { engineConfiguration->etb1configured = etbConfigured; } else if (i == 1) { engineConfiguration->etb2configured = etbConfigured; } } if (!engineConfiguration->etb1configured && !engineConfiguration->etb2configured) { // It's not valid to have a PPS without any ETBs - check that at least one ETB was enabled along with the pedal if (hasPedal) { criticalError("A pedal position sensor was configured, but no electronic throttles are configured."); } } #if 0 && ! EFI_UNIT_TEST percent_t startupThrottlePosition = getTPS(); if (absF(startupThrottlePosition - engineConfiguration->etbNeutralPosition) > STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD) { /** * Unexpected electronic throttle start-up position is worth a critical error */ firmwareError(ObdCode::OBD_Throttle_Actuator_Control_Range_Performance_Bank_1, "startup ETB position %.2f not %d", startupThrottlePosition, engineConfiguration->etbNeutralPosition); startupPositionError = true; } #endif /* EFI_UNIT_TEST */ #if !EFI_UNIT_TEST static bool started = false; if (started == false) { dcThread.start(); started = true; } #endif } void initElectronicThrottle() { if (hasFirmwareError()) { return; } for (int i = 0; i < ETB_COUNT; i++) { engine->etbControllers[i] = etbControllers[i]; } #if EFI_PROD_CODE addConsoleAction("etbinfo", [](){ efiPrintf("etbAutoTune=%d", engine->etbAutoTune); efiPrintf("TPS=%.2f", Sensor::getOrZero(SensorType::Tps1)); efiPrintf("ETB1 duty=%.2f", (float)engine->outputChannels.etb1DutyCycle); efiPrintf("ETB freq=%d", engineConfiguration->etbFreq); for (int i = 0; i < ETB_COUNT; i++) { efiPrintf("ETB%d", i); efiPrintf(" dir1=%s", hwPortname(engineConfiguration->etbIo[i].directionPin1)); efiPrintf(" dir2=%s", hwPortname(engineConfiguration->etbIo[i].directionPin2)); efiPrintf(" control=%s", hwPortname(engineConfiguration->etbIo[i].controlPin)); efiPrintf(" disable=%s", hwPortname(engineConfiguration->etbIo[i].disablePin)); showDcMotorInfo(i); } }); #endif /* EFI_PROD_CODE */ pedal2tpsMap.initTable(config->pedalToTpsTable, config->pedalToTpsRpmBins, config->pedalToTpsPedalBins); throttle2TrimTable.initTable(config->throttle2TrimTable, config->throttle2TrimRpmBins, config->throttle2TrimTpsBins); tcEtbDropTable.initTable(engineConfiguration->tractionControlEtbDrop, engineConfiguration->tractionControlSlipBins, engineConfiguration->tractionControlSpeedBins); doInitElectronicThrottle(); } void setEtbIdlePosition(percent_t pos) { for (int i = 0; i < ETB_COUNT; i++) { if (auto etb = engine->etbControllers[i]) { etb->setIdlePosition(pos); } } } void setEtbWastegatePosition(percent_t pos) { for (int i = 0; i < ETB_COUNT; i++) { if (auto etb = engine->etbControllers[i]) { etb->setWastegatePosition(pos); } } } void setEtbLuaAdjustment(percent_t pos) { for (int i = 0; i < ETB_COUNT; i++) { if (auto etb = engine->etbControllers[i]) { etb->setLuaAdjustment(pos); } } } void setToyota89281_33010_pedal_position_sensor() { setPPSCalibration(0, 4.1, 0.73, 4.9); } void setHitachiEtbCalibration() { setToyota89281_33010_pedal_position_sensor(); setHitachiEtbBiasBins(); engineConfiguration->etb.pFactor = 2.7999; engineConfiguration->etb.iFactor = 25.5; engineConfiguration->etb.dFactor = 0.053; engineConfiguration->etb.offset = 0.0; engineConfiguration->etb.periodMs = 5.0; engineConfiguration->etb.minValue = -100.0; engineConfiguration->etb.maxValue = 100.0; // Nissan 60mm throttle engineConfiguration->tpsMin = engineConfiguration->tps2Min = 113; engineConfiguration->tpsMax = engineConfiguration->tps2Max = 846; engineConfiguration->tps1SecondaryMin = engineConfiguration->tps2SecondaryMin = 897; engineConfiguration->tps1SecondaryMax = engineConfiguration->tps2SecondaryMax = 161; } void setProteusHitachiEtbDefaults() { #if HW_PROTEUS setHitachiEtbCalibration(); // EFI_ADC_12: "Analog Volt 3" engineConfiguration->tps1_2AdcChannel = PROTEUS_IN_TPS1_2; // EFI_ADC_13: "Analog Volt 4" engineConfiguration->tps2_1AdcChannel = PROTEUS_IN_TPS2_1; // EFI_ADC_0: "Analog Volt 5" engineConfiguration->tps2_2AdcChannel = PROTEUS_IN_ANALOG_VOLT_5; setPPSInputs(PROTEUS_IN_ANALOG_VOLT_6, PROTEUS_IN_PPS2); #endif // HW_PROTEUS } #endif /* EFI_ELECTRONIC_THROTTLE_BODY */ template<> const electronic_throttle_s* getLiveData(size_t idx) { #if EFI_ELECTRONIC_THROTTLE_BODY if (idx >= efi::size(etbControllers)) { return nullptr; } return etbControllers[idx]; #else return nullptr; #endif }