/** * @file adc_inputs.cpp * @brief Low level ADC code * * rusEfi uses two ADC devices on the same 16 pins at the moment. Two ADC devices are used in orde to distinguish between * fast and slow devices. The idea is that but only having few channels in 'fast' mode we can sample those faster? * * At the moment rusEfi does not allow to have more than 16 ADC channels combined. At the moment there is no flexibility to use * any ADC pins, only the hardcoded choice of 16 pins. * * Slow ADC group is used for IAT, CLT, AFR, VBATT etc - this one is currently sampled at 500Hz * * Fast ADC group is used for MAP, MAF HIP - this one is currently sampled at 10KHz * We need frequent MAP for map_averaging.cpp * * 10KHz equals one measurement every 3.6 degrees at 6000 RPM * * @date Jan 14, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "global.h" #if HAL_USE_ADC #include "os_access.h" #include "engine.h" #include "adc_inputs.h" #include "adc_subscription.h" #include "AdcConfiguration.h" #include "mpu_util.h" #include "periodic_thread_controller.h" #include "pin_repository.h" #include "engine_math.h" #include "engine_controller.h" #include "maf.h" #include "perf_trace.h" // on F7 this must be aligned on a 32-byte boundary, and be a multiple of 32 bytes long. // When we invalidate the cache line(s) for ADC samples, we don't want to nuke any // adjacent data. // F4 does not care static __ALIGNED(32) adcsample_t slowAdcSampleBuf[ADC_BUF_DEPTH_SLOW * ADC_MAX_CHANNELS_COUNT]; static __ALIGNED(32) adcsample_t fastAdcSampleBuf[ADC_BUF_DEPTH_FAST * ADC_MAX_CHANNELS_COUNT]; static_assert(sizeof(slowAdcSampleBuf) % 32 == 0, "Slow ADC sample buffer size must be a multiple of 32 bytes"); static_assert(sizeof(fastAdcSampleBuf) % 32 == 0, "Fast ADC sample buffer size must be a multiple of 32 bytes"); static adc_channel_mode_e adcHwChannelEnabled[HW_MAX_ADC_INDEX]; EXTERN_ENGINE; // Board voltage, with divider coefficient accounted for float getVoltageDivided(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) { return getVoltage(msg, hwChannel PASS_ENGINE_PARAMETER_SUFFIX) * engineConfiguration->analogInputDividerCoefficient; } // voltage in MCU universe, from zero to VDD float getVoltage(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) { return adcToVolts(getAdcValue(msg, hwChannel)); } AdcDevice::AdcDevice(ADCConversionGroup* hwConfig, adcsample_t *buf) { this->hwConfig = hwConfig; this->samples = buf; channelCount = 0; conversionCount = 0; errorsCount = 0; hwConfig->sqr1 = 0; hwConfig->sqr2 = 0; hwConfig->sqr3 = 0; #if ADC_MAX_CHANNELS_COUNT > 16 hwConfig->sqr4 = 0; hwConfig->sqr5 = 0; #endif /* ADC_MAX_CHANNELS_COUNT */ memset(hardwareIndexByIndernalAdcIndex, EFI_ADC_NONE, sizeof(hardwareIndexByIndernalAdcIndex)); memset(internalAdcIndexByHardwareIndex, 0xFFFFFFFF, sizeof(internalAdcIndexByHardwareIndex)); } #if !defined(GPT_FREQ_FAST) || !defined(GPT_PERIOD_FAST) /** * 8000 RPM is 133Hz * If we want to sample MAP once per 5 degrees we need 133Hz * (360 / 5) = 9576Hz of fast ADC */ // todo: migrate to continues ADC mode? probably not - we cannot afford the callback in // todo: continues mode. todo: look into our options #define GPT_FREQ_FAST 100000 /* PWM clock frequency. I wonder what does this setting mean? */ #define GPT_PERIOD_FAST 10 /* PWM period (in PWM ticks). */ #endif /* GPT_FREQ_FAST GPT_PERIOD_FAST */ // is there a reason to have this configurable at runtime? #ifndef ADC_SLOW_DEVICE #define ADC_SLOW_DEVICE ADCD1 #endif /* ADC_SLOW_DEVICE */ // is there a reason to have this configurable at runtime? #ifndef ADC_FAST_DEVICE #define ADC_FAST_DEVICE ADCD2 #endif /* ADC_FAST_DEVICE */ static volatile int slowAdcCounter = 0; static LoggingWithStorage logger("ADC"); // todo: move this flag to Engine god object static int adcDebugReporting = false; EXTERN_ENGINE; static adcsample_t getAvgAdcValue(int index, adcsample_t *samples, int bufDepth, int numChannels) { uint32_t result = 0; for (int i = 0; i < bufDepth; i++) { result += samples[index]; index += numChannels; } // this truncation is guaranteed to not be lossy - the average can't be larger than adcsample_t return static_cast(result / bufDepth); } // See https://github.com/rusefi/rusefi/issues/976 for discussion on these values #define ADC_SAMPLING_SLOW ADC_SAMPLE_56 #define ADC_SAMPLING_FAST ADC_SAMPLE_28 /* * ADC conversion group. */ static ADCConversionGroup adcgrpcfgSlow = { .circular = FALSE, .num_channels = 0, .end_cb = nullptr, .error_cb = nullptr, /* HW dependent part.*/ .cr1 = 0, .cr2 = ADC_CR2_SWSTART, /** * here we configure all possible channels for slow mode. Some channels would not actually * be used hopefully that's fine to configure all possible channels. */ // sample times for channels 10...18 .smpr1 = ADC_SMPR1_SMP_AN10(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN11(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN12(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN13(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN14(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN15(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_144), // In this field must be specified the sample times for channels 0...9 .smpr2 = ADC_SMPR2_SMP_AN0(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN1(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN2(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN3(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN4(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN5(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN6(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN7(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN8(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN9(ADC_SAMPLING_SLOW), .htr = 0, .ltr = 0, .sqr1 = 0, // Conversion group sequence 13...16 + sequence length .sqr2 = 0, // Conversion group sequence 7...12 .sqr3 = 0, // Conversion group sequence 1...6 #if ADC_MAX_CHANNELS_COUNT > 16 .sqr4 = 0, // Conversion group sequence 19...24 .sqr5 = 0 // Conversion group sequence 25...30 #endif /* ADC_MAX_CHANNELS_COUNT */ }; AdcDevice slowAdc(&adcgrpcfgSlow, slowAdcSampleBuf); void adc_callback_fast(ADCDriver *adcp, adcsample_t *buffer, size_t n); static ADCConversionGroup adcgrpcfgFast = { .circular = FALSE, .num_channels = 0, .end_cb = adc_callback_fast, .error_cb = nullptr, /* HW dependent part.*/ .cr1 = 0, .cr2 = ADC_CR2_SWSTART, /** * here we configure all possible channels for fast mode. Some channels would not actually * be used hopefully that's fine to configure all possible channels. * */ // sample times for channels 10...18 .smpr1 = ADC_SMPR1_SMP_AN10(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN11(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN12(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN13(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN14(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN15(ADC_SAMPLING_FAST), // In this field must be specified the sample times for channels 0...9 .smpr2 = ADC_SMPR2_SMP_AN0(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN1(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN2(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN3(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN4(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN5(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN6(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN7(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN8(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN9(ADC_SAMPLING_FAST), .htr = 0, .ltr = 0, .sqr1 = 0, // Conversion group sequence 13...16 + sequence length .sqr2 = 0, // Conversion group sequence 7...12 .sqr3 = 0, // Conversion group sequence 1...6 #if ADC_MAX_CHANNELS_COUNT > 16 .sqr4 = 0, // Conversion group sequence 19...24 .sqr5 = 0 // Conversion group sequence 25...30 #endif /* ADC_MAX_CHANNELS_COUNT */ }; AdcDevice fastAdc(&adcgrpcfgFast, fastAdcSampleBuf); #if HAL_USE_GPT static void fast_adc_callback(GPTDriver*) { #if EFI_INTERNAL_ADC /* * Starts an asynchronous ADC conversion operation, the conversion * will be executed in parallel to the current PWM cycle and will * terminate before the next PWM cycle. */ chSysLockFromISR() ; if (ADC_FAST_DEVICE.state != ADC_READY && ADC_FAST_DEVICE.state != ADC_COMPLETE && ADC_FAST_DEVICE.state != ADC_ERROR) { fastAdc.errorsCount++; // todo: when? why? firmwareError(OBD_PCM_Processor_Fault, "ADC fast not ready?"); chSysUnlockFromISR() ; return; } adcStartConversionI(&ADC_FAST_DEVICE, &adcgrpcfgFast, fastAdc.samples, ADC_BUF_DEPTH_FAST); chSysUnlockFromISR() ; fastAdc.conversionCount++; #endif /* EFI_INTERNAL_ADC */ } #endif /* HAL_USE_GPT */ float getMCUInternalTemperature() { #if defined(ADC_CHANNEL_SENSOR) float TemperatureValue = adcToVolts(slowAdc.getAdcValueByHwChannel(EFI_ADC_TEMP_SENSOR)); TemperatureValue -= 0.760f; // Subtract the reference voltage at 25 deg C TemperatureValue /= 0.0025f; // Divide by slope 2.5mV TemperatureValue += 25.0; // Add the 25 deg C if (TemperatureValue > 150.0f || TemperatureValue < -50.0f) { firmwareError(OBD_PCM_Processor_Fault, "Invalid CPU temperature measured!"); } return TemperatureValue; #else return 0; #endif /* ADC_CHANNEL_SENSOR */ } int getInternalAdcValue(const char *msg, adc_channel_e hwChannel) { if (hwChannel == EFI_ADC_NONE) { warning(CUSTOM_OBD_ANALOG_INPUT_NOT_CONFIGURED, "ADC: %s input is not configured", msg); return -1; } #if EFI_ENABLE_MOCK_ADC if (engine->engineState.mockAdcState.hasMockAdc[hwChannel]) return engine->engineState.mockAdcState.getMockAdcValue(hwChannel); #endif /* EFI_ENABLE_MOCK_ADC */ if (adcHwChannelEnabled[hwChannel] == ADC_FAST) { int internalIndex = fastAdc.internalAdcIndexByHardwareIndex[hwChannel]; // todo if ADC_BUF_DEPTH_FAST EQ 1 // return fastAdc.samples[internalIndex]; int value = getAvgAdcValue(internalIndex, fastAdc.samples, ADC_BUF_DEPTH_FAST, fastAdc.size()); return value; } if (adcHwChannelEnabled[hwChannel] != ADC_SLOW) { // todo: make this not happen during hardware continues integration warning(CUSTOM_OBD_WRONG_ADC_MODE, "ADC is off [%s] index=%d", msg, hwChannel); } return slowAdc.getAdcValueByHwChannel(hwChannel); } #if HAL_USE_GPT static GPTConfig fast_adc_config = { GPT_FREQ_FAST, fast_adc_callback, 0, 0 }; #endif /* HAL_USE_GPT */ adc_channel_mode_e getAdcMode(adc_channel_e hwChannel) { if (slowAdc.isHwUsed(hwChannel)) { return ADC_SLOW; } if (fastAdc.isHwUsed(hwChannel)) { return ADC_FAST; } return ADC_OFF; } int AdcDevice::size() const { return channelCount; } int AdcDevice::getAdcValueByHwChannel(int hwChannel) const { int internalIndex = internalAdcIndexByHardwareIndex[hwChannel]; return values.adc_data[internalIndex]; } int AdcDevice::getAdcValueByIndex(int internalIndex) const { return values.adc_data[internalIndex]; } void AdcDevice::invalidateSamplesCache() { #if defined(STM32F7XX) // The STM32F7xx has a data cache // DMA operations DO NOT invalidate cache lines, since the ARM m7 doesn't have // anything like a CCI that maintains coherency across multiple bus masters. // As a result, we have to manually invalidate the D-cache any time we (the CPU) // would like to read something that somebody else wrote (ADC via DMA, in this case) SCB_InvalidateDCache_by_Addr(reinterpret_cast(samples), sizeof(samples)); #endif /* STM32F7XX */ } void AdcDevice::init(void) { hwConfig->num_channels = size(); /* driver does this internally */ //hwConfig->sqr1 += ADC_SQR1_NUM_CH(size()); } bool AdcDevice::isHwUsed(adc_channel_e hwChannelIndex) const { for (int i = 0; i < channelCount; i++) { if (hardwareIndexByIndernalAdcIndex[i] == hwChannelIndex) { return true; } } return false; } void AdcDevice::enableChannel(adc_channel_e hwChannel) { if (channelCount >= efi::size(values.adc_data)) { firmwareError(OBD_PCM_Processor_Fault, "Too many ADC channels configured"); return; } int logicChannel = channelCount++; size_t channelAdcIndex = hwChannel - 1; internalAdcIndexByHardwareIndex[hwChannel] = logicChannel; hardwareIndexByIndernalAdcIndex[logicChannel] = hwChannel; if (logicChannel < 6) { hwConfig->sqr3 += (channelAdcIndex) << (5 * logicChannel); } else if (logicChannel < 12) { hwConfig->sqr2 += (channelAdcIndex) << (5 * (logicChannel - 6)); } else if (logicChannel < 18) { hwConfig->sqr1 += (channelAdcIndex) << (5 * (logicChannel - 12)); } #if ADC_MAX_CHANNELS_COUNT > 16 else if (logicChannel < 24) { hwConfig->sqr4 += (channelAdcIndex) << (5 * (logicChannel - 18)); } else if (logicChannel < 30) { hwConfig->sqr5 += (channelAdcIndex) << (5 * (logicChannel - 24)); } #endif /* ADC_MAX_CHANNELS_COUNT */ } void AdcDevice::enableChannelAndPin(const char *msg, adc_channel_e hwChannel) { enableChannel(hwChannel); brain_pin_e pin = getAdcChannelBrainPin(msg, hwChannel); efiSetPadMode(msg, pin, PAL_MODE_INPUT_ANALOG); } static void printAdcValue(int channel) { int value = getAdcValue("print", (adc_channel_e)channel); float volts = adcToVoltsDivided(value); scheduleMsg(&logger, "adc voltage : %.2f", volts); } adc_channel_e AdcDevice::getAdcHardwareIndexByInternalIndex(int index) const { return hardwareIndexByIndernalAdcIndex[index]; } static void printFullAdcReport(Logging *logger) { scheduleMsg(logger, "fast %d slow %d", fastAdc.conversionCount, slowAdc.conversionCount); for (int index = 0; index < fastAdc.size(); index++) { appendMsgPrefix(logger); adc_channel_e hwIndex = fastAdc.getAdcHardwareIndexByInternalIndex(index); if (hwIndex != EFI_ADC_NONE && hwIndex != EFI_ADC_ERROR) { ioportid_t port = getAdcChannelPort("print", hwIndex); int pin = getAdcChannelPin(hwIndex); int adcValue = getAvgAdcValue(hwIndex, fastAdc.samples, ADC_BUF_DEPTH_FAST, fastAdc.size()); logger->appendPrintf(" F ch%d %s%d", index, portname(port), pin); logger->appendPrintf(" ADC%d 12bit=%d", hwIndex, adcValue); float volts = adcToVolts(adcValue); logger->appendPrintf(" v=%.2f", volts); appendMsgPostfix(logger); scheduleLogging(logger); } } for (int index = 0; index < slowAdc.size(); index++) { appendMsgPrefix(logger); adc_channel_e hwIndex = slowAdc.getAdcHardwareIndexByInternalIndex(index); if (hwIndex != EFI_ADC_NONE && hwIndex != EFI_ADC_ERROR) { ioportid_t port = getAdcChannelPort("print", hwIndex); int pin = getAdcChannelPin(hwIndex); int adcValue = slowAdc.getAdcValueByIndex(index); logger->appendPrintf(" S ch%d %s%d", index, portname(port), pin); logger->appendPrintf(" ADC%d 12bit=%d", hwIndex, adcValue); float volts = adcToVolts(adcValue); logger->appendPrintf(" v=%.2f", volts); appendMsgPostfix(logger); scheduleLogging(logger); } } } static void setAdcDebugReporting(int value) { adcDebugReporting = value; scheduleMsg(&logger, "adcDebug=%d", adcDebugReporting); } void waitForSlowAdc(int lastAdcCounter) { // don't halt the firmware if there are no slow channels assigned if (slowAdc.size() < 1) return; // we use slowAdcCounter instead of slowAdc.conversionCount because we need ADC_COMPLETE state // todo: use sync.objects? while (slowAdcCounter <= lastAdcCounter) { chThdSleepMilliseconds(1); } } int getSlowAdcCounter() { return slowAdcCounter; } class SlowAdcController : public PeriodicController<256> { public: SlowAdcController() : PeriodicController("ADC", NORMALPRIO + 5, SLOW_ADC_RATE) { } void PeriodicTask(efitick_t nowNt) override { { ScopePerf perf(PE::AdcConversionSlow); slowAdc.conversionCount++; msg_t result = adcConvert(&ADC_SLOW_DEVICE, &adcgrpcfgSlow, slowAdc.samples, ADC_BUF_DEPTH_SLOW); // If something went wrong - try again later if (result == MSG_RESET || result == MSG_TIMEOUT) { slowAdc.errorsCount++; return; } #ifdef USE_ADC3_VBATT_HACK void proteusAdcHack(); proteusAdcHack(); #endif } { ScopePerf perf(PE::AdcProcessSlow); slowAdc.invalidateSamplesCache(); /* Calculates the average values from the ADC samples.*/ for (int i = 0; i < slowAdc.size(); i++) { adcsample_t value = getAvgAdcValue(i, slowAdc.samples, ADC_BUF_DEPTH_SLOW, slowAdc.size()); adcsample_t prev = slowAdc.values.adc_data[i]; float result = (slowAdcCounter == 0) ? value : CONFIG(slowAdcAlpha) * value + (1 - CONFIG(slowAdcAlpha)) * prev; slowAdc.values.adc_data[i] = (adcsample_t)result; } slowAdcCounter++; AdcSubscription::UpdateSubscribers(nowNt); } } }; void addChannel(const char *name, adc_channel_e setting, adc_channel_mode_e mode) { if (setting == EFI_ADC_NONE) { return; } if (/*type-limited (int)setting < 0 || */(int)setting>=HW_MAX_ADC_INDEX) { firmwareError(CUSTOM_INVALID_ADC, "Invalid ADC setting %s", name); return; } adcHwChannelEnabled[setting] = mode; AdcDevice& dev = (mode == ADC_SLOW) ? slowAdc : fastAdc; dev.enableChannelAndPin(name, setting); } void removeChannel(const char *name, adc_channel_e setting) { (void)name; if (setting == EFI_ADC_NONE) { return; } adcHwChannelEnabled[setting] = ADC_OFF; } static void configureInputs(void) { memset(adcHwChannelEnabled, 0, sizeof(adcHwChannelEnabled)); /** * order of analog channels here is totally random and has no meaning * we also have some weird implementation with internal indices - that all has no meaning, it's just a random implementation * which does not mean anything. */ addChannel("MAP", engineConfiguration->map.sensor.hwChannel, ADC_FAST); addChannel("MAF", engineConfiguration->mafAdcChannel, ADC_FAST); addChannel("HIP9011", engineConfiguration->hipOutputChannel, ADC_FAST); addChannel("Baro Press", engineConfiguration->baroSensor.hwChannel, ADC_SLOW); addChannel("TPS 1 Primary", engineConfiguration->tps1_1AdcChannel, ADC_SLOW); addChannel("TPS 1 Secondary", engineConfiguration->tps1_2AdcChannel, ADC_SLOW); addChannel("TPS 2 Primary", engineConfiguration->tps2_1AdcChannel, ADC_SLOW); addChannel("TPS 2 Secondary", engineConfiguration->tps2_2AdcChannel, ADC_SLOW); addChannel("Wastegate Position", engineConfiguration->wastegatePositionSensor, ADC_SLOW); addChannel("Idle Position Sensor", engineConfiguration->idlePositionSensor, ADC_SLOW); addChannel("Fuel Level", engineConfiguration->fuelLevelSensor, ADC_SLOW); addChannel("Acc Pedal1", engineConfiguration->throttlePedalPositionAdcChannel, ADC_SLOW); addChannel("Acc Pedal2", engineConfiguration->throttlePedalPositionSecondAdcChannel, ADC_SLOW); addChannel("VBatt", engineConfiguration->vbattAdcChannel, ADC_SLOW); // not currently used addChannel("Vref", engineConfiguration->vRefAdcChannel, ADC_SLOW); addChannel("CLT", engineConfiguration->clt.adcChannel, ADC_SLOW); addChannel("IAT", engineConfiguration->iat.adcChannel, ADC_SLOW); addChannel("AUX Temp 1", engineConfiguration->auxTempSensor1.adcChannel, ADC_SLOW); addChannel("AUX Temp 2", engineConfiguration->auxTempSensor2.adcChannel, ADC_SLOW); addChannel("AUXF#1", engineConfiguration->auxFastSensor1_adcChannel, ADC_FAST); addChannel("AFR", engineConfiguration->afr.hwChannel, ADC_SLOW); addChannel("Oil Pressure", engineConfiguration->oilPressure.hwChannel, ADC_SLOW); addChannel("LFP", engineConfiguration->lowPressureFuel.hwChannel, ADC_SLOW); addChannel("HFP", engineConfiguration->highPressureFuel.hwChannel, ADC_SLOW); if (CONFIG(isCJ125Enabled)) { addChannel("CJ125 UR", engineConfiguration->cj125ur, ADC_SLOW); addChannel("CJ125 UA", engineConfiguration->cj125ua, ADC_SLOW); } for (int i = 0; i < FSIO_ANALOG_INPUT_COUNT ; i++) { addChannel("FSIOadc", engineConfiguration->fsioAdc[i], ADC_SLOW); } setAdcChannelOverrides(); } static SlowAdcController slowAdcController; void initAdcInputs() { scheduleMsg(&logger, "initAdcInputs()"); if (ADC_BUF_DEPTH_FAST > MAX_ADC_GRP_BUF_DEPTH) firmwareError(CUSTOM_ERR_ADC_DEPTH_FAST, "ADC_BUF_DEPTH_FAST too high"); if (ADC_BUF_DEPTH_SLOW > MAX_ADC_GRP_BUF_DEPTH) firmwareError(CUSTOM_ERR_ADC_DEPTH_SLOW, "ADC_BUF_DEPTH_SLOW too high"); configureInputs(); // migrate to 'enable adcdebug' addConsoleActionI("adcdebug", &setAdcDebugReporting); #if EFI_INTERNAL_ADC /* * Initializes the ADC driver. */ adcStart(&ADC_SLOW_DEVICE, NULL); adcStart(&ADC_FAST_DEVICE, NULL); adcSTM32EnableTSVREFE(); // Internal temperature sensor /* Enable this code only when you absolutly sure * that there is no possible errors from ADC */ #if 0 /* All ADC use DMA and DMA calls end_cb from its IRQ * If none of ADC users need error callback - we can disable * shared ADC IRQ and save some CPU ticks */ if ((adcgrpcfgSlow.error_cb == NULL) && (adcgrpcfgFast.error_cb == NULL) /* TODO: Add ADC3? */) { nvicDisableVector(STM32_ADC_NUMBER); } #endif #if defined(ADC_CHANNEL_SENSOR) // Internal temperature sensor, Available on ADC1 only slowAdc.enableChannel(EFI_ADC_TEMP_SENSOR); #endif /* ADC_CHANNEL_SENSOR */ slowAdc.init(); // Start the slow ADC thread slowAdcController.Start(); fastAdc.init(); /* * Initializes the PWM driver. */ #if HAL_USE_GPT gptStart(EFI_INTERNAL_FAST_ADC_GPT, &fast_adc_config); gptStartContinuous(EFI_INTERNAL_FAST_ADC_GPT, GPT_PERIOD_FAST); #endif /* HAL_USE_GPT */ addConsoleActionI("adc", (VoidInt) printAdcValue); #else scheduleMsg(&logger, "ADC disabled"); #endif } void printFullAdcReportIfNeeded(Logging *logger) { if (!adcDebugReporting) return; printFullAdcReport(logger); } #endif /* HAL_USE_ADC */