rusefi/firmware/controllers/can/can_dash.cpp

1267 lines
29 KiB
C++

/**
* @file can_dash.cpp
*
* This file handles transmission of ECU data to various OE dashboards.
*
* @date Mar 19, 2020
* @author Matthew Kennedy, (c) 2020
*/
#include "pch.h"
#if EFI_CAN_SUPPORT
#include "can_dash.h"
#include "can_msg_tx.h"
#include "can_bmw.h"
#include "can_vag.h"
#include "rtc_helper.h"
#include "fuel_math.h"
// CAN Bus ID for broadcast
#define CAN_FIAT_MOTOR_INFO 0x561
#define CAN_MAZDA_RX_RPM_SPEED 0x201
#define CAN_MAZDA_RX_STEERING_WARNING 0x300
#define CAN_MAZDA_RX_STATUS_1 0x212
#define CAN_MAZDA_RX_STATUS_2 0x420
//w202 DASH
#define W202_STAT_1 0x308 /* _20ms cycle */
#define W202_STAT_2 0x608 /* _100ms cycle */
#define W202_ALIVE 0x210 /* _200ms cycle */
#define W202_STAT_3 0x310 /* _200ms cycle */
//BMW E90 DASH
#define E90_ABS_COUNTER 0x0C0
#define E90_SEATBELT_COUNTER 0x0D7
#define E90_T15 0x130
#define E90_RPM 0x175
#define E90_BRAKE_COUNTER 0x19E
#define E90_SPEED 0x1A6
#define E90_TEMP 0x1D0
#define E90_GEAR 0x1D2
#define E90_FUEL 0x349
#define E90_EBRAKE 0x34F
#define E90_TIME 0x39E
#define HONDA_SPEED_158 0x158
#define HONDA_TACH_1DC 0x1DC
static time_msecs_t mph_timer;
static time_msecs_t mph_ctr;
/**
* https://docs.google.com/spreadsheets/d/1IkP05ODpjNt-k4YQLYl58_TNlN9U4IBu5z7i0BPVEM4
*/
#define GENESIS_COUPLE_RPM_316 0x316
#define GENESIS_COUPLE_COOLANT_329 0x329
#define GENESIS_COUPLE_SENSORS_382 0x382
// when A/C compressor is allowed to be on, these values need to be sent so the A/C panel activates the compressor
#define GENESIS_COUPLE_AC_ENABLE_18F 0x18F
#define NISSAN_RPM_1F9 0x1F9
// Nissan z33 350Z and else
// 0x23d = 573
#define NISSAN_RPM_CLT 0x23D
#define NISSAN_VEHICLE_SPEED_280 0x280
// wheel speed see "102 CAN Communication decoded"
// 19500 value would be 100 kph
#define NISSAN_WHEEL_SPEED 0x285
#define NISSAN_CLT_551 0x551
static uint8_t rpmcounter;
static uint8_t seatbeltcnt;
static uint8_t abscounter = 0xF0;
static uint8_t brakecnt_1 = 0xF0, brakecnt_2 = 0xF0;
static uint8_t mph_a, mph_2a, mph_last, tmp_cnt, gear_cnt;
static uint16_t mph_counter = 0xF000;
static bool cluster_time_set;
constexpr uint8_t e90_temp_offset = 49;
// todo: those forward declarations are out of overall code style
void canDashboardBMW(CanCycle cycle);
void canDashboardFiat(CanCycle cycle);
void canMazdaRX8(CanCycle cycle);
void canDashboardW202(CanCycle cycle);
void canDashboardBMWE90(CanCycle cycle);
void canDashboardVagMqb(CanCycle cycle);
void canDashboardNissanVQ(CanCycle cycle);
void canDashboardGenesisCoupe(CanCycle cycle);
void canDashboardAim(CanCycle cycle);
void canDashboardHaltech(CanCycle cycle);
void updateDash(CanCycle cycle) {
// Transmit dash data, if enabled
switch (engineConfiguration->canNbcType) {
case CAN_BUS_NBC_NONE:
break;
case CAN_BUS_NBC_BMW:
canDashboardBMW(cycle);
break;
case CAN_BUS_Haltech:
canDashboardHaltech(cycle);
break;
case CAN_BUS_NBC_FIAT:
canDashboardFiat(cycle);
break;
case CAN_BUS_NBC_VAG:
canDashboardVAG(cycle);
break;
case CAN_BUS_MAZDA_RX8:
canMazdaRX8(cycle);
break;
case CAN_BUS_W202_C180:
canDashboardW202(cycle);
break;
case CAN_BUS_BMW_E90:
canDashboardBMWE90(cycle);
break;
case CAN_BUS_MQB:
canDashboardVagMqb(cycle);
break;
case CAN_BUS_NISSAN_VQ:
canDashboardNissanVQ(cycle);
break;
case CAN_BUS_GENESIS_COUPE:
canDashboardGenesisCoupe(cycle);
break;
case CAN_AIM_DASH:
canDashboardAim(cycle);
break;
default:
firmwareError(OBD_PCM_Processor_Fault, "Nothing for canNbcType %s", getCan_nbc_e(engineConfiguration->canNbcType));
break;
}
}
//BMW Dashboard
//todo: we use 50ms fixed cycle, trace is needed to check for correct period
void canDashboardBMW(CanCycle cycle) {
if (cycle.isInterval(CI::_50ms)) {
{
CanTxMessage msg(CAN_BMW_E46_SPEED);
msg.setShortValue(10 * 8, 1);
}
{
CanTxMessage msg(CAN_BMW_E46_RPM);
msg.setShortValue((int) (Sensor::getOrZero(SensorType::Rpm) * 6.4), 2);
}
{
CanTxMessage msg(CAN_BMW_E46_DME2);
msg.setShortValue((int) ((Sensor::getOrZero(SensorType::Clt) + 48.373) / 0.75), 1);
}
}
}
//todo: we use 50ms fixed cycle, trace is needed to check for correct period
void canMazdaRX8(CanCycle cycle) {
if (cycle.isInterval(CI::_50ms)) {
{
CanTxMessage msg(CAN_MAZDA_RX_STEERING_WARNING);
// todo: something needs to be set here? see http://rusefi.com/wiki/index.php?title=Vehicle:Mazda_Rx8_2004
}
{
CanTxMessage msg(CAN_MAZDA_RX_RPM_SPEED);
float kph = Sensor::getOrZero(SensorType::VehicleSpeed);
msg.setShortValue(SWAP_UINT16(Sensor::getOrZero(SensorType::Rpm) * 4), 0);
msg.setShortValue(0xFFFF, 2);
msg.setShortValue(SWAP_UINT16((int )(100 * kph + 10000)), 4);
msg.setShortValue(0, 6);
}
{
CanTxMessage msg(CAN_MAZDA_RX_STATUS_1);
msg[0] = 0xFE; //Unknown
msg[1] = 0xFE; //Unknown
msg[2] = 0xFE; //Unknown
msg[3] = 0x34; //DSC OFF in combo with byte 5 Live data only seen 0x34
msg[4] = 0x00; // B01000000; // Brake warning B00001000; //ABS warning
msg[5] = 0x40; // TCS in combo with byte 3
msg[6] = 0x00; // Unknown
msg[7] = 0x00; // Unused
}
{
CanTxMessage msg(CAN_MAZDA_RX_STATUS_2);
auto clt = Sensor::get(SensorType::Clt);
msg[0] = (uint8_t)(clt.value_or(0) + 69); //temp gauge //~170 is red, ~165 last bar, 152 centre, 90 first bar, 92 second bar
// TODO: fixme!
//msg[1] = ((int16_t)(engine->engineState.vssEventCounter*(engineConfiguration->vehicleSpeedCoef*0.277*2.58))) & 0xff;
msg[2] = 0x00; // unknown
msg[3] = 0x00; //unknown
msg[4] = 0x01; //Oil Pressure (not really a gauge)
msg[5] = 0x00; //check engine light
msg[6] = 0x00; //Coolant, oil and battery
if ((Sensor::getOrZero(SensorType::Rpm)>0) && (Sensor::get(SensorType::BatteryVoltage).value_or(VBAT_FALLBACK_VALUE)<13)) {
msg.setBit(6, 6); // battery light
}
if (!clt.Valid || clt.Value > 105) {
// coolant light, 101 - red zone, light means its get too hot
// Also turn on the light in case of sensor failure
msg.setBit(6, 1);
}
//oil pressure warning lamp bit is 7
msg[7] = 0x00; //unused
}
}
}
void canDashboardFiat(CanCycle cycle) {
if (cycle.isInterval(CI::_50ms)) {
{
//Fiat Dashboard
CanTxMessage msg(CAN_FIAT_MOTOR_INFO);
msg.setShortValue((int) (Sensor::getOrZero(SensorType::Clt) - 40), 3); //Coolant Temp
msg.setShortValue(Sensor::getOrZero(SensorType::Rpm) / 32, 6); //RPM
}
}
}
void canDashboardVAG(CanCycle cycle) {
if (cycle.isInterval(CI::_10ms)) {
{
//VAG Dashboard
CanTxMessage msg(CAN_VAG_Motor_1);
msg.setShortValue(Sensor::getOrZero(SensorType::Rpm) * 4, 2); //RPM
}
float clt = Sensor::getOrZero(SensorType::Clt);
{
CanTxMessage msg(CAN_VAG_Motor_2);
msg.setShortValue((int) ((clt + 48.373) / 0.75), 1); //Coolant Temp
}
{
CanTxMessage msg(CAN_VAG_CLT_V2);
msg.setShortValue((int) ((clt + 48.373) / 0.75), 4); //Coolant Temp
}
{
CanTxMessage msg(CAN_VAG_IMMO);
msg.setShortValue(0x80, 1);
}
}
}
void canDashboardW202(CanCycle cycle) {
if (cycle.isInterval(CI::_20ms)) {
{
CanTxMessage msg(W202_STAT_1);
uint16_t tmp = Sensor::getOrZero(SensorType::Rpm);
msg[0] = 0x08; // Unknown
msg[1] = (tmp >> 8); //RPM
msg[2] = (tmp & 0xff); //RPM
msg[3] = 0x00; // 0x01 - tank blink, 0x02 - EPC
msg[4] = 0x00; // Unknown
msg[5] = 0x00; // Unknown
msg[6] = 0x00; // Unknown - oil info
msg[7] = 0x00; // Unknown - oil info
}
}
if (cycle.isInterval(CI::_100ms)) {
{
CanTxMessage msg(W202_STAT_2); //dlc 7
msg[0] = (int)(Sensor::getOrZero(SensorType::Clt) + 40); // CLT -40 offset
msg[1] = 0x3D; // TBD
msg[2] = 0x63; // Const
msg[3] = 0x41; // Const
msg[4] = 0x00; // Unknown
msg[5] = 0x05; // Const
msg[6] = 0x50; // TBD
msg[7] = 0x00; // Unknown
}
}
if (cycle.isInterval(CI::_200ms)) {
{
CanTxMessage msg(W202_ALIVE);
msg[0] = 0x0A; // Const
msg[1] = 0x18; // Const
msg[2] = 0x00; // Const
msg[3] = 0x00; // Const
msg[4] = 0xC0; // Const
msg[5] = 0x00; // Const
msg[6] = 0x00; // Const
msg[7] = 0x00; // Const
}
{
CanTxMessage msg(W202_STAT_3);
msg[0] = 0x00; // Const
msg[1] = 0x00; // Const
msg[2] = 0x6D; // TBD
msg[3] = 0x7B; // Const
msg[4] = 0x21; // TBD
msg[5] = 0x07; // Const
msg[6] = 0x33; // Const
msg[7] = 0x05; // Const
}
}
}
static int rollingId = 0;
void canDashboardGenesisCoupe(CanCycle cycle) {
if (cycle.isInterval(CI::_50ms)) {
{
CanTxMessage msg(GENESIS_COUPLE_RPM_316, 8);
int rpm8 = Sensor::getOrZero(SensorType::Rpm) * 4;
msg[3] = rpm8 >> 8;
msg[4] = rpm8 & 0xFF;
}
{
CanTxMessage msg(GENESIS_COUPLE_COOLANT_329, 8);
int clt = Sensor::getOrZero(SensorType::Clt) * 2;
msg[1] = clt;
}
}
}
void canDashboardNissanVQ(CanCycle cycle) {
if (cycle.isInterval(CI::_50ms)) {
{
CanTxMessage msg(NISSAN_RPM_1F9, 8);
msg[0] = 0x20;
int rpm8 = (int)(Sensor::getOrZero(SensorType::Rpm) * 8);
msg[2] = rpm8 >> 8;
msg[3] = rpm8 & 0xFF;
}
{
CanTxMessage msg(NISSAN_CLT_551, 8);
int clt = Sensor::getOrZero(SensorType::Clt);
msg[0] = clt + 45;
}
{
CanTxMessage msg(NISSAN_RPM_CLT, 8);
rollingId = (rollingId + 1) % 4;
const uint8_t magicByte[4] = {0x03, 0x23, 0x42, 0x63};
msg[0] = magicByte[rollingId];
msg[1] = (int)(Sensor::getOrZero(SensorType::AcceleratorPedal) * 255 / 100);
// thank you "102 CAN Communication decoded"
#define CAN_23D_RPM_MULT 3.15
int rpm315 = (int)(Sensor::getOrZero(SensorType::Rpm) / CAN_23D_RPM_MULT);
msg[3] = rpm315 & 0xFF;
msg[4] = rpm315 >> 8;
msg[7] = 0x70; // todo: CLT decoding?
}
}
}
/**
* https://docs.google.com/spreadsheets/d/1XMfeGlhgl0lBL54lNtPdmmFd8gLr2T_YTriokb30kJg
*/
void canDashboardVagMqb(CanCycle cycle) {
if (cycle.isInterval(CI::_50ms)) {
{ // 'turn-on'
CanTxMessage msg(0x3C0, 4);
// ignition ON
msg[2] = 3;
}
{ //RPM
CanTxMessage msg(0x107, 8);
msg[3] = ((int)(Sensor::getOrZero(SensorType::Rpm) / 3.5)) & 0xFF;
msg[4] = ((int)(Sensor::getOrZero(SensorType::Rpm) / 3.5)) >> 8;
}
}
}
void canDashboardBMWE90(CanCycle cycle)
{
if (cycle.isInterval(CI::_50ms)) {
{ //T15 'turn-on'
CanTxMessage msg(E90_T15, 5);
msg[0] = 0x45;
msg[1] = 0x41;
msg[2] = 0x61;
msg[3] = 0x8F;
msg[4] = 0xFC;
}
{ //Ebrake light
CanTxMessage msg(E90_EBRAKE, 2);
msg[0] = 0xFD;
msg[1] = 0xFF;
}
{ //RPM
rpmcounter++;
if (rpmcounter > 0xFE)
rpmcounter = 0xF0;
CanTxMessage msg(E90_RPM, 3);
msg[0] = rpmcounter;
msg[1] = ((int)(Sensor::getOrZero(SensorType::Rpm)) * 4) & 0xFF;
msg[2] = ((int)(Sensor::getOrZero(SensorType::Rpm)) * 4) >> 8;
}
{ //oil & coolant temp (all in C, despite gauge being F)
tmp_cnt++;
if (tmp_cnt >= 0x0F)
tmp_cnt = 0x00;
CanTxMessage msg(E90_TEMP, 8);
msg[0] = (int)(Sensor::getOrZero(SensorType::Clt) + e90_temp_offset); //coolant
msg[1] = (int)(Sensor::getOrZero(SensorType::AuxTemp1) + e90_temp_offset); //oil (AuxTemp1)
msg[2] = tmp_cnt;
msg[3] = 0xC8;
msg[4] = 0xA7;
msg[5] = 0xD3;
msg[6] = 0x0D;
msg[7] = 0xA8;
}
}
if (cycle.isInterval(CI::_100ms)) {
{
//Seatbelt counter
seatbeltcnt++;
if (seatbeltcnt > 0xFE)
seatbeltcnt = 0x00;
CanTxMessage msg(E90_SEATBELT_COUNTER, 2);
msg[0] = seatbeltcnt;
msg[1] = 0xFF;
}
{
//Brake counter 100ms
brakecnt_1 += 16;
brakecnt_2 += 16;
if (brakecnt_1 > 0xEF)
brakecnt_1 = 0x0F;
if (brakecnt_2 > 0xF0)
brakecnt_2 = 0xA0;
CanTxMessage msg(E90_BRAKE_COUNTER, 8);
msg[0] = 0x00;
msg[1] = 0xE0;
msg[2] = brakecnt_1;
msg[3] = 0xFC;
msg[4] = 0xFE;
msg[5] = 0x41;
msg[6] = 0x00;
msg[7] = brakecnt_2;
}
{ //ABS counter
abscounter++;
if (abscounter > 0xFE)
abscounter = 0xF0;
CanTxMessage msg(E90_ABS_COUNTER, 2);
msg[0] = abscounter;
msg[1] = 0xFF;
}
{ //Fuel gauge
CanTxMessage msg(E90_FUEL, 5); //fuel gauge
msg[0] = 0x76;
msg[1] = 0x0F;
msg[2] = 0xBE;
msg[3] = 0x1A;
msg[4] = 0x00;
}
{ //Gear indicator/counter
gear_cnt++;
if (gear_cnt >= 0x0F)
gear_cnt = 0x00;
CanTxMessage msg(E90_GEAR, 6);
msg[0] = 0x78;
msg[1] = 0x0F;
msg[2] = 0xFF;
msg[3] = (gear_cnt << 4) | 0xC;
msg[4] = 0xF1;
msg[5] = 0xFF;
}
{ //E90_SPEED
auto vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed);
float mph = vehicleSpeed * 0.6213712;
mph_ctr = ((TIME_I2MS(chVTGetSystemTime()) - mph_timer) / 50);
mph_a = (mph_ctr * mph / 2);
mph_2a = mph_a + mph_last;
mph_last = mph_2a;
mph_counter += mph_ctr * 100;
if(mph_counter >= 0xFFF0)
mph_counter = 0xF000;
mph_timer = TIME_I2MS(chVTGetSystemTime());
CanTxMessage msg(E90_SPEED, 8);
msg[0] = mph_2a & 0xFF;
msg[1] = mph_2a >> 8;
msg[2] = mph_2a & 0xFF;
msg[3] = mph_2a >> 8;
msg[4] = mph_2a & 0xFF;
msg[5] = mph_2a >> 8;
msg[6] = mph_counter & 0xFF;
msg[7] = (mph_counter >> 8) | 0xF0;
}
}
{
if (!cluster_time_set) {
struct tm timp;
date_get_tm(&timp);
CanTxMessage msg(E90_TIME, 8);
msg[0] = timp.tm_hour;
msg[1] = timp.tm_min;
msg[2] = timp.tm_sec;
msg[3] = timp.tm_mday;
msg[4] = (((timp.tm_mon + 1) << 4) | 0x0F);
msg[5] = (timp.tm_year + 1900) & 0xFF;
msg[6] = ((timp.tm_year + 1900) >> 8) | 0xF0;
msg[7] = 0xF2;
cluster_time_set = 1;
}
}
}
void canDashboardHaltech(CanCycle cycle) {
uint16_t tmp;
if (cycle.isInterval(CI::_20ms)) {
/* 0x360 - 50Hz rate */
{
CanTxMessage msg(0x360, 8);
tmp = Sensor::getOrZero(SensorType::Rpm);
/* RPM */
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* MAP */
tmp = (((uint16_t)(Sensor::getOrZero(SensorType::Map))) * 10);
msg[2] = (tmp >> 8);
msg[3] = (tmp & 0x00ff);
/* TPS y = x/10 */
tmp = (uint16_t)((float)(Sensor::getOrZero(SensorType::Tps1)) * 10);
msg[4] = (tmp >> 8);
msg[5] = (tmp & 0x00ff);
/* Coolant pressure */
msg[6] = 0;
msg[7] = 0;
}
/* 0x361 - 50Hz rate */
{
CanTxMessage msg(0x361, 8);
/* Fuel pressure */
tmp = (uint16_t)(Sensor::getOrZero(SensorType::FuelPressureLow));
msg[0] = (tmp >> 8);
msg[1] = (tmp&0x00ff);
/* Oil pressure */
tmp = (uint16_t)(Sensor::getOrZero(SensorType::OilPressure));
msg[2] = (tmp >> 8);
msg[3] = (tmp & 0x00ff);
/* Engine Demand */
tmp = (uint16_t)(Sensor::getOrZero(SensorType::Map));
msg[4] = (tmp >> 8);
msg[5] = (tmp & 0x00ff);
/* Wastegate Pressure */
msg[6] = 0;
msg[7] = 0;
}
/* 0x362 - 50Hz rate */
{
CanTxMessage msg(0x362, 6);
/* Injection Stage 1 Duty Cycle - y = x/10 */
uint16_t rpm = Sensor::getOrZero(SensorType::Rpm);
tmp = (uint16_t)( getInjectorDutyCycle(rpm) * 10) ;
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* Injcetion Stage 2 Duty Cycle */
msg[2] = 0x00;
msg[3] = 0x00;
/* Ignition Angle (Leading) - y = x/10 */
float timing = engine->engineState.timingAdvance[0];
int16_t ignAngle = ((timing > 360 ? timing - 720 : timing) * 10);
msg[4] = (ignAngle >> 8);
msg[5] = (ignAngle & 0x00ff);
}
/* todo: 0x3E5 = 50Hz rate */
{
CanTxMessage msg(0x3E5, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3EA = 50Hz rate */
{
CanTxMessage msg(0x3EA, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3EB = 50Hz rate */
{
CanTxMessage msg(0x3EB, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3EC = 50Hz rate */
{
CanTxMessage msg(0x3EC, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3ED = 50Hz rate */
{
CanTxMessage msg(0x3ED, 2);
msg[0] = 0x00;
msg[1] = 0x00;
}
/* todo: 0x471 = 50Hz rate */
{
CanTxMessage msg(0x471, 2);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
}
}
if (cycle.isInterval(CI::_50ms)) {
/* 0x363 - 20Hz rate */
{
CanTxMessage msg(0x363, 4);
/* Wheel Slip */
msg[0] = 0x00;
msg[1] = 0x00;
/* Wheel Diff */
msg[2] = 0x00;
msg[3] = 0x00 ;
}
/* 0x368 - 20Hz rate */
{
CanTxMessage msg(0x368, 8);
/* Wideband Sensor 1 */
tmp = (uint16_t)(Sensor::getOrZero(SensorType::Lambda1)) * 1000;
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* Wideband Sensor 2 */
tmp = (uint16_t)(Sensor::getOrZero(SensorType::Lambda2) * 1000);
msg[2] = (tmp >> 8);
msg[3] = (tmp & 0x00ff);
/* Wideband Sensor 3 */
msg[4] = 0x00;
msg[5] = 0x00;
/* Wideband Sensor 4 */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x369 - 20Hz rate */
{
CanTxMessage msg(0x369, 8);
/* Trigger System Error Count */
tmp = engine->triggerCentral.triggerState.totalTriggerErrorCounter;
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* Trigger Counter ?? */
tmp = engine->triggerCentral.getHwEventCounter((int)SHAFT_PRIMARY_FALLING);
msg[2] = (tmp >> 8);
msg[3] = (tmp & 0x00ff);
/* unused */
msg[4] = 0x00;
msg[5] = 0x00;
/* Trigger Sync Level ?? */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x36A - 20Hz rate */
/* todo: one day we should split this */
{
CanTxMessage msg(0x36A, 4);
/* Knock Level 1 */
tmp = (engine->outputChannels.knockLevel * 100);
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* Knock Level 2 */
msg[2] = (tmp >> 8);
msg[3] = (tmp * 0x00ff);
}
/* 0x36B - 20Hz rate */
{
CanTxMessage msg(0x36B, 8);
/* Break Pressure */
msg[0] = 0x00;
msg[1] = 0x00;
/* NOS pressure Sensor 1 */
msg[2] = 0x00;
msg[3] = 0x00;
/* Turbo Speed Sensor 1 */
msg[4] = 0x00;
msg[5] = 0x00;
/* Lateral G */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x36C = 20Hz rate */
{
CanTxMessage msg(0x36C, 8);
/* Wheel Speed Front Left */
auto vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed);
tmp = (vehicleSpeed * 10 );
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* Wheel Speed Front Right */
msg[2] = (tmp >> 8);
msg[3] = (tmp & 0x00ff);
/* Wheel Speed Read Left */
msg[4] = (tmp >> 8);
msg[5] = (tmp & 0x00ff);
/* Wheel Speed Read Right */
msg[6] = (tmp >> 8);
msg[7] = (tmp & 0x00ff);
}
/* 0x36D = 20Hz rate */
{
CanTxMessage msg(0x36D, 8);
/* Unused */
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
/* Exhaust Cam Angle 1 */
msg[4] = 0x00;
msg[5] = 0x00;
/* Exhaust Cam Angle 2 */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x36E = 20Hz rate */
{
CanTxMessage msg(0x36E, 8);
/* Engine Limiting Active 0 = off/1=on*/
msg[0] = 0x00;
msg[1] = 0x00;
/* Launch Control Ignition Retard */
msg[2] = 0x00;
msg[3] = 0x00;
/* Launch Control Fuel Enrich */
msg[4] = 0x00;
msg[5] = 0x00;
/* Longitudinal G */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x36F = 20Hz rate */
{
CanTxMessage msg(0x36F, 4);
/* Generic Output 1 Duty Cycle */
msg[0] = 0x00;
msg[1] = 0x00;
/* Boost Control Output */
msg[2] = 0x00;
msg[3] = 0x00;
}
/* 0x370 = 20Hz rate */
{
CanTxMessage msg(0x370, 8);
/* Vehicle Speed */
auto vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed);
tmp = (vehicleSpeed * 10 );
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* unused */
msg[2] = 0x00;
msg[3] = 0x00;
/* Intake Cam Angle 1 */
msg[4] = 0x00;
msg[5] = 0x00;
/* Intake Cam Angle 2 */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3E6 = 20Hz rate */
{
CanTxMessage msg(0x3E6, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3E7 = 20Hz rate */
{
CanTxMessage msg(0x3E7, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3E8 = 20Hz rate */
{
CanTxMessage msg(0x3E8, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3E9 = 20Hz rate */
{
CanTxMessage msg(0x3E9, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3EE = 20Hz rate */
{
CanTxMessage msg(0x3EE, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3EF = 20Hz rate */
{
CanTxMessage msg(0x3EF, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x470 = 20Hz rate */
{
CanTxMessage msg(0x470, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x472 = 20Hz rate */
{
CanTxMessage msg(0x472, 8);
msg[0] = 0x00;
msg[1] = 0x00;
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
}
if (cycle.isInterval(CI::_100ms)) {
/* 0x371 = 10Hz rate */
{
CanTxMessage msg(0x371, 4);
/* Fuel Flow */
msg[0] = 0x00;
msg[1] = 0x00;
/* Fuel Flow Return */
msg[2] = 0x00;
msg[3] = 0x00;
}
/* 0x372 = 10Hz rate */
{
CanTxMessage msg(0x372, 8);
/* Battery Voltage */
tmp = (uint16_t)(Sensor::getOrZero(SensorType::BatteryVoltage) * 10);
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* unused */
msg[2] = 0x00;
msg[3] = 0x00;
/* Target Boost Level todo */
msg[4] = 0x00;
msg[5] = 0x00;
/* Barometric pressure */
tmp = (uint16_t)(Sensor::getOrZero(SensorType::BarometricPressure) * 10);
msg[6] = (tmp >> 8);
msg[7] = (tmp & 0x00ff);
}
/* 0x373 = 10Hz rate */
{
CanTxMessage msg(0x373, 8);
/* EGT1 */
msg[0] = 0x00;
msg[1] = 0x00;
/* EGT2 */
msg[2] = 0x00;
msg[3] = 0x00;
/* EGT3 */
msg[4] = 0x00;
msg[5] = 0x00;
/* EGT4 */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x374 = 10Hz rate */
{
CanTxMessage msg(0x374, 8);
/* EGT5 */
msg[0] = 0x00;
msg[1] = 0x00;
/* EGT6 */
msg[2] = 0x00;
msg[3] = 0x00;
/* EGT7 */
msg[4] = 0x00;
msg[5] = 0x00;
/* EGT8 */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x375 = 10Hz rate */
{
CanTxMessage msg(0x375, 8);
/* EGT9 */
msg[0] = 0x00;
msg[1] = 0x00;
/* EGT10 */
msg[2] = 0x00;
msg[3] = 0x00;
/* EGT11 */
msg[4] = 0x00;
msg[5] = 0x00;
/* EGT12 */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x376 = 10Hz rate */
{
CanTxMessage msg(0x376, 8);
/* Ambient Air Temperature */
msg[0] = 0x00;
msg[1] = 0x00;
/* Relative Humidity */
msg[2] = 0x00;
msg[3] = 0x00;
/* Specific Humidity */
msg[4] = 0x00;
msg[5] = 0x00;
/* Absolute Humidity */
msg[6] = 0x00;
msg[7] = 0x00;
}
}
if (cycle.isInterval(CI::_200ms)) {
/* 0x3E0 = 5Hz rate */
{
CanTxMessage msg(0x3E0, 8);
/* Coolant temperature in K y = x/10 */
tmp = ((Sensor::getOrZero(SensorType::Clt) + 273.15) * 10);
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
/* Air Temperature */
tmp = ((Sensor::getOrZero(SensorType::Iat) + 273.15) * 10);
msg[2] = (tmp >> 8);
msg[3] = (tmp & 0x00ff);
/* Fuel Temperature */
msg[4] = 0x00;
msg[5] = 0x00;
/* Oil Temperature */
msg[6] = 0x00;
msg[7] = 0x00;
}
/* 0x3E1 = 5Hz rate */
{
CanTxMessage msg(0x3E1, 6);
/* Gearbox Oil Temperature */
msg[0] = 0x00;
msg[1] = 0x00;
/* Diff oil Temperature */
msg[2] = 0x00;
msg[3] = 0x00;
/* Fuel Composition */
msg[4] = 0x00;
msg[5] = 0x00;
}
/* 0x3E2 = 5Hz rate */
{
CanTxMessage msg(0x3E2, 2);
/* Fuel Level in Liters */
tmp = (Sensor::getOrZero(SensorType::FuelLevel)* 10);
msg[0] = (tmp >> 8);
msg[1] = (tmp & 0x00ff);
}
/* 0x3E3 = 5Hz rate */
{
CanTxMessage msg(0x3E3, 8);
/* Fuel Trim Short Term Bank 1*/
msg[0] = 0x00;
msg[1] = 0x00;
/* Fuel Trim Short Term Bank 2*/
msg[2] = 0x00;
msg[3] = 0x00;
/* Fuel Trim Long Term Bank 1*/
msg[4] = 0x00;
msg[5] = 0x00;
/* Fuel Trim Long Term Bank 2*/
msg[6] = 0x00;
msg[7] = 0x00;
}
/* todo: 0x3E4 = 5Hz rate */
{
CanTxMessage msg(0x3E4, 8);
msg[0] = 0x00; //unused
/* Switch status */
msg[1] = 0x00;
/* Switch status */
msg[2] = 0x00;
msg[3] = 0x00;
msg[4] = 0x00;
msg[5] = 0x00;
msg[6] = 0x00;
msg[7] = 0x00;
}
}
}
//Based on AIM can protocol
//https://www.aimtechnologies.com/support/racingecu/AiM_CAN_101_eng.pdf
struct Aim5f0 {
scaled_channel<uint16_t, 1> Rpm;
scaled_channel<uint16_t, 650> Tps;
scaled_channel<uint16_t, 650> Pps;
scaled_channel<uint16_t, 100> Vss;
};
static void populateFrame(Aim5f0& msg) {
msg.Rpm = Sensor::getOrZero(SensorType::Rpm);
msg.Tps = Sensor::getOrZero(SensorType::Tps1);
msg.Pps = Sensor::getOrZero(SensorType::AcceleratorPedal);
msg.Vss = Sensor::getOrZero(SensorType::VehicleSpeed);
}
struct Aim5f1 {
scaled_channel<uint16_t, 10> WheelSpeedFR;
scaled_channel<uint16_t, 10> WheelSpeedFL;
scaled_channel<uint16_t, 10> WheelSpeedRR;
scaled_channel<uint16_t, 10> WheelSpeedRL;
};
static void populateFrame(Aim5f1& msg) {
// We don't handle wheel speed, just set to 0?
msg.WheelSpeedFR = 0;
msg.WheelSpeedFL = 0;
msg.WheelSpeedRR = 0;
msg.WheelSpeedRL = 0;
}
struct Aim5f2 {
scaled_channel<uint16_t, 190> Iat;
scaled_channel<uint16_t, 190> Ect;
scaled_channel<uint16_t, 190> FuelT;
scaled_channel<uint16_t, 190> OilT;
};
static void populateFrame(Aim5f2& msg) {
msg.Iat = Sensor::getOrZero(SensorType::Iat) + 45;
msg.Ect = Sensor::getOrZero(SensorType::Clt) + 45;
msg.FuelT = Sensor::getOrZero(SensorType::AuxTemp1) + 45;
msg.OilT = Sensor::getOrZero(SensorType::AuxTemp2) + 45;
}
struct Aim5f3 {
scaled_channel<uint16_t, 10> Map;
scaled_channel<uint16_t, 10> Baro;
scaled_channel<uint16_t, 1000> OilP;
scaled_channel<uint16_t, 20> FuelP;
};
static void populateFrame(Aim5f3& msg) {
// MAP/Baro are sent in millibar -> 10 millibar per kpa
msg.Map = 10 * Sensor::getOrZero(SensorType::Map);
msg.Baro = 10 * Sensor::getOrZero(SensorType::BarometricPressure);
// Oil/Fuel P use bar -> 100 kpa per bar
msg.OilP = Sensor::getOrZero(SensorType::OilPressure) / 100;
msg.FuelP = Sensor::getOrZero(SensorType::FuelPressureInjector) / 100;
}
struct Aim5f4 {
scaled_channel<uint16_t, 10000> Boost;
scaled_channel<uint16_t, 3200> Vbat;
scaled_channel<uint16_t, 10> FuelUse;
scaled_channel<uint16_t, 10> Gear;
};
static void populateFrame(Aim5f4& msg) {
float deltaKpa = Sensor::getOrZero(SensorType::Map)
- Sensor::get(SensorType::BarometricPressure).value_or(101.325);
float boostBar = deltaKpa / 100;
msg.Boost = boostBar;
msg.Vbat = Sensor::getOrZero(SensorType::BatteryVoltage);
msg.FuelUse = 0;
msg.Gear = 0;
}
struct Aim5f5 {
scaled_channel<uint16_t, 1> ShiftFlag;
scaled_channel<uint16_t, 1> GearTime;
scaled_channel<uint16_t, 1> TpsV;
scaled_channel<uint16_t, 100> FuelLevel;
};
static void populateFrame(Aim5f5& msg) {
msg.FuelLevel = Sensor::getOrZero(SensorType::FuelLevel);
// Dunno what to do with these
msg.ShiftFlag = 0;
msg.GearTime = 0;
msg.TpsV = 0;
}
struct Aim5f6 {
scaled_channel<uint16_t, 2000> Lambda1;
scaled_channel<uint16_t, 2000> Lambda2;
scaled_channel<uint16_t, 10> LambdaTemp1;
scaled_channel<uint16_t, 10> LambdaTemp2;
};
static void populateFrame(Aim5f6& msg) {
msg.Lambda1 = Sensor::getOrZero(SensorType::Lambda1);
msg.Lambda2 = Sensor::getOrZero(SensorType::Lambda2);
msg.LambdaTemp1 = 0;
msg.LambdaTemp2 = 0;
}
struct Aim5f7 {
scaled_channel<uint16_t, 10> LambdaErr1;
scaled_channel<uint16_t, 10> LambdaErr2;
scaled_channel<uint16_t, 2000> LambdaTarget1;
scaled_channel<uint16_t, 2000> LambdaTarget2;
};
static void populateFrame(Aim5f7& msg) {
// We don't handle wheel speed, just set to 0?
msg.LambdaErr1 = 0;
msg.LambdaErr2 = 0;
msg.LambdaTarget1 = engine->engineState.targetLambda;
msg.LambdaTarget2 = engine->engineState.targetLambda;
}
void canDashboardAim(CanCycle cycle) {
if (!cycle.isInterval(CI::_10ms)) {
return;
}
transmitStruct<Aim5f0>(0x5f0, false);
transmitStruct<Aim5f1>(0x5f1, false);
transmitStruct<Aim5f2>(0x5f2, false);
transmitStruct<Aim5f3>(0x5f3, false);
transmitStruct<Aim5f4>(0x5f4, false);
transmitStruct<Aim5f5>(0x5f5, false);
transmitStruct<Aim5f6>(0x5f6, false);
transmitStruct<Aim5f7>(0x5f7, false);
// there are more, but less important for us
// transmitStruct<Aim5f8>(0x5f8, false);
// transmitStruct<Aim5f9>(0x5f9, false);
// transmitStruct<Aim5fa>(0x5fa, false);
// transmitStruct<Aim5fb>(0x5fb, false);
// transmitStruct<Aim5fc>(0x5fc, false);
// transmitStruct<Aim5fd>(0x5fd, false);
}
#endif // EFI_CAN_SUPPORT