rusefi/firmware/hw_layer/hardware.cpp

624 lines
14 KiB
C++

/**
* @file hardware.cpp
* @brief Hardware package entry point
*
* @date May 27, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "trigger_input.h"
#include "can_hw.h"
#include "hardware.h"
#include "rtc_helper.h"
#include "bench_test.h"
#include "yaw_rate_sensor.h"
#include "pin_repository.h"
#include "max31855.h"
#include "logic_analyzer.h"
#include "smart_gpio.h"
#include "accelerometer.h"
#include "eficonsole.h"
#include "console_io.h"
#include "sensor_chart.h"
#include "serial_hw.h"
#include "idle_thread.h"
#include "odometer.h"
#if EFI_PROD_CODE
#include "mpu_util.h"
#endif /* EFI_PROD_CODE */
#include "mmc_card.h"
#include "AdcConfiguration.h"
#include "idle_hardware.h"
#include "mcp3208.h"
#include "hip9011.h"
#include "histogram.h"
#include "gps_uart.h"
#include "HD44780.h"
#include "joystick.h"
#include "sent.h"
#include "cdm_ion_sense.h"
#include "trigger_central.h"
#include "svnversion.h"
#include "vvt.h"
#include "trigger_emulator_algo.h"
#include "boost_control.h"
#include "software_knock.h"
#include "init.h"
#if EFI_MC33816
#include "mc33816.h"
#endif /* EFI_MC33816 */
#if EFI_MAP_AVERAGING
#include "map_averaging.h"
#endif
#if EFI_INTERNAL_FLASH
#include "flash_main.h"
#endif
#if HAL_USE_PAL && EFI_PROD_CODE
#include "digital_input_exti.h"
#endif // HAL_USE_PAL
#if EFI_CAN_SUPPORT
#include "can_vss.h"
#endif
#if HAL_USE_SPI
extern bool isSpiInitialized[5];
/**
* Only one consumer can use SPI bus at a given time
*/
void lockSpi(spi_device_e device) {
efiAssertVoid(CUSTOM_STACK_SPI, getCurrentRemainingStack() > 128, "lockSpi");
spiAcquireBus(getSpiDevice(device));
}
void unlockSpi(spi_device_e device) {
spiReleaseBus(getSpiDevice(device));
}
static void initSpiModules(engine_configuration_s *engineConfiguration) {
UNUSED(engineConfiguration);
if (engineConfiguration->is_enabled_spi_1) {
turnOnSpi(SPI_DEVICE_1);
}
if (engineConfiguration->is_enabled_spi_2) {
turnOnSpi(SPI_DEVICE_2);
}
if (engineConfiguration->is_enabled_spi_3) {
turnOnSpi(SPI_DEVICE_3);
}
if (engineConfiguration->is_enabled_spi_4) {
turnOnSpi(SPI_DEVICE_4);
}
}
/**
* @return NULL if SPI device not specified
*/
SPIDriver * getSpiDevice(spi_device_e spiDevice) {
if (spiDevice == SPI_NONE) {
return NULL;
}
#if STM32_SPI_USE_SPI1
if (spiDevice == SPI_DEVICE_1) {
return &SPID1;
}
#endif
#if STM32_SPI_USE_SPI2
if (spiDevice == SPI_DEVICE_2) {
return &SPID2;
}
#endif
#if STM32_SPI_USE_SPI3
if (spiDevice == SPI_DEVICE_3) {
return &SPID3;
}
#endif
#if STM32_SPI_USE_SPI4
if (spiDevice == SPI_DEVICE_4) {
return &SPID4;
}
#endif
firmwareError(CUSTOM_ERR_UNEXPECTED_SPI, "Unexpected SPI device: %d", spiDevice);
return NULL;
}
#endif
#if HAL_USE_ADC
static FastAdcToken fastMapSampleIndex;
static FastAdcToken hipSampleIndex;
#if HAL_TRIGGER_USE_ADC
static FastAdcToken triggerSampleIndex;
#endif
extern AdcDevice fastAdc;
#ifdef FAST_ADC_SKIP
// No reason to enable if N = 1
static_assert(FAST_ADC_SKIP > 1);
static size_t fastAdcSkipCount = 0;
#endif // FAST_ADC_SKIP
/**
* This method is not in the adc* lower-level file because it is more business logic then hardware.
*/
void onFastAdcComplete(adcsample_t*) {
ScopePerf perf(PE::AdcCallbackFast);
#if HAL_TRIGGER_USE_ADC
// we need to call this ASAP, because trigger processing is time-critical
triggerAdcCallback(getFastAdc(triggerSampleIndex));
#endif /* HAL_TRIGGER_USE_ADC */
#ifdef FAST_ADC_SKIP
// If we run the fast ADC _very_ fast for triggerAdcCallback's benefit, we may want to
// skip most of the samples for the rest of the callback.
if (fastAdcSkipCount++ == FAST_ADC_SKIP) {
fastAdcSkipCount = 0;
} else {
return;
}
#endif
/**
* this callback is executed 10 000 times a second, it needs to be as fast as possible
*/
efiAssertVoid(CUSTOM_STACK_ADC, getCurrentRemainingStack() > 128, "lowstck#9b");
#if EFI_SENSOR_CHART && EFI_SHAFT_POSITION_INPUT
if (getEngineState()->sensorChartMode == SC_AUX_FAST1) {
float voltage = getAdcValue("fAux1", engineConfiguration->auxFastSensor1_adcChannel);
scAddData(engine->triggerCentral.getCurrentEnginePhase(getTimeNowNt()).value_or(0), voltage);
}
#endif /* EFI_SENSOR_CHART */
#if EFI_MAP_AVERAGING
mapAveragingAdcCallback(getFastAdc(fastMapSampleIndex));
#endif /* EFI_MAP_AVERAGING */
#if EFI_HIP_9011
if (engineConfiguration->isHip9011Enabled) {
hipAdcCallback(getFastAdc(hipSampleIndex));
}
#endif /* EFI_HIP_9011 */
}
#endif /* HAL_USE_ADC */
static void calcFastAdcIndexes() {
#if HAL_USE_ADC
fastMapSampleIndex = enableFastAdcChannel("Fast MAP", engineConfiguration->map.sensor.hwChannel);
hipSampleIndex = enableFastAdcChannel("HIP9011", engineConfiguration->hipOutputChannel);
#if HAL_TRIGGER_USE_ADC
triggerSampleIndex = enableFastAdcChannel("Trigger ADC", getAdcChannelForTrigger());
#endif /* HAL_TRIGGER_USE_ADC */
#endif/* HAL_USE_ADC */
}
static void adcConfigListener(Engine *engine) {
UNUSED(engine);
// todo: something is not right here - looks like should be a callback for each configuration change?
calcFastAdcIndexes();
}
void stopSpi(spi_device_e device) {
#if HAL_USE_SPI
if (!isSpiInitialized[device]) {
return; // not turned on
}
isSpiInitialized[device] = false;
efiSetPadUnused(getSckPin(device));
efiSetPadUnused(getMisoPin(device));
efiSetPadUnused(getMosiPin(device));
#endif /* HAL_USE_SPI */
}
/**
* this method is NOT currently invoked on ECU start
* todo: maybe start invoking this method on ECU start so that peripheral start-up initialization and restart are unified?
*/
void applyNewHardwareSettings() {
/**
* All 'stop' methods need to go before we begin starting pins.
*
* We take settings from 'activeConfiguration' not 'engineConfiguration' while stopping hardware.
* Some hardware is restart unconditionally on change of parameters while for some systems we make extra effort and restart only
* relevant settings were changes.
*
*/
ButtonDebounce::stopConfigurationList();
#if EFI_PROD_CODE
stopSensors();
#endif // EFI_PROD_CODE
#if EFI_PROD_CODE && EFI_SHAFT_POSITION_INPUT
stopTriggerInputPins();
#endif /* EFI_SHAFT_POSITION_INPUT */
#if EFI_SENT_SUPPORT
stopSent();
#endif
#if (HAL_USE_PAL && EFI_JOYSTICK)
stopJoystickPins();
#endif /* HAL_USE_PAL && EFI_JOYSTICK */
#if EFI_CAN_SUPPORT
stopCanPins();
#endif /* EFI_CAN_SUPPORT */
#if EFI_AUX_SERIAL
stopAuxSerialPins();
#endif /* EFI_AUX_SERIAL */
#if EFI_HIP_9011
stopHip9001_pins();
#endif /* EFI_HIP_9011 */
stopHardware();
if (isConfigurationChanged(is_enabled_spi_1)) {
stopSpi(SPI_DEVICE_1);
}
if (isConfigurationChanged(is_enabled_spi_2)) {
stopSpi(SPI_DEVICE_2);
}
if (isConfigurationChanged(is_enabled_spi_3)) {
stopSpi(SPI_DEVICE_3);
}
if (isConfigurationChanged(is_enabled_spi_4)) {
stopSpi(SPI_DEVICE_4);
}
#if EFI_HD44780_LCD
stopHD44780_pins();
#endif /* #if EFI_HD44780_LCD */
if (isPinOrModeChanged(clutchUpPin, clutchUpPinMode)) {
// bug? duplication with stopPedalPins?
efiSetPadUnused(activeConfiguration.clutchUpPin);
}
#if EFI_SHAFT_POSITION_INPUT
stopTriggerDebugPins();
#endif // EFI_SHAFT_POSITION_INPUT
enginePins.unregisterPins();
#if EFI_PROD_CODE
reconfigureSensors();
#endif /* EFI_PROD_CODE */
ButtonDebounce::startConfigurationList();
/*******************************************
* Start everything back with new settings *
******************************************/
#if EFI_PROD_CODE && EFI_SHAFT_POSITION_INPUT
startTriggerInputPins();
#endif /* EFI_SHAFT_POSITION_INPUT */
startHardware();
#if EFI_HD44780_LCD
startHD44780_pins();
#endif /* #if EFI_HD44780_LCD */
#if EFI_PROD_CODE && (BOARD_EXT_GPIOCHIPS > 0)
/* TODO: properly restart gpio chips...
* This is only workaround for "CS pin lost" bug
* see: https://github.com/rusefi/rusefi/issues/2107
* We should provide better way to gracefully stop all
* gpio chips: set outputs to safe state, release all
* on-chip resources (gpios, SPIs, etc) and then restart
* with updated settings.
* Following code just re-inits CS pins for all external
* gpio chips, but does not update CS pin definition in
* gpio chips private data/settings. So changing CS pin
* on-fly does not work */
startSmartCsPins();
#endif /* (BOARD_EXT_GPIOCHIPS > 0) */
enginePins.startPins();
#if EFI_AUX_SERIAL
startAuxSerialPins();
#endif /* EFI_AUX_SERIAL */
#if EFI_HIP_9011
startHip9001_pins();
#endif /* EFI_HIP_9011 */
#if EFI_PROD_CODE && EFI_IDLE_CONTROL
if (isIdleHardwareRestartNeeded()) {
initIdleHardware();
}
#endif
#if EFI_BOOST_CONTROL
startBoostPin();
#endif
#if EFI_EMULATE_POSITION_SENSORS
startTriggerEmulatorPins();
#endif /* EFI_EMULATE_POSITION_SENSORS */
#if EFI_LOGIC_ANALYZER
startLogicAnalyzerPins();
#endif /* EFI_LOGIC_ANALYZER */
#if EFI_AUX_PID
startVvtControlPins();
#endif /* EFI_AUX_PID */
#if EFI_SENT_SUPPORT
startSent();
#endif
adcConfigListener(engine);
}
#if EFI_PROD_CODE
void setBor(int borValue) {
efiPrintf("setting BOR to %d", borValue);
BOR_Set((BOR_Level_t)borValue);
showBor();
}
void showBor(void) {
efiPrintf("BOR=%d", (int)BOR_Get());
}
#endif /* EFI_PROD_CODE */
// This function initializes hardware that can do so before configuration is loaded
void initHardwareNoConfig() {
efiAssertVoid(CUSTOM_IH_STACK, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "init h");
efiAssertVoid(CUSTOM_EC_NULL, engineConfiguration!=NULL, "engineConfiguration");
efiPrintf("initHardware()");
#if EFI_PROD_CODE
initPinRepository();
#endif
#if EFI_HISTOGRAMS
/**
* histograms is a data structure for CPU monitor, it does not depend on configuration
*/
initHistogramsModule();
#endif /* EFI_HISTOGRAMS */
/**
* We need the LED_ERROR pin even before we read configuration
*/
initPrimaryPins();
#if EFI_PROD_CODE
// it's important to initialize this pretty early in the game before any scheduling usages
initSingleTimerExecutorHardware();
initRtc();
#endif /* EFI_PROD_CODE */
#if EFI_INTERNAL_FLASH
initFlash();
#endif
#if EFI_SHAFT_POSITION_INPUT
// todo: figure out better startup logic
initTriggerCentral();
#endif /* EFI_SHAFT_POSITION_INPUT */
#if EFI_FILE_LOGGING
initEarlyMmcCard();
#endif // EFI_FILE_LOGGING
#if HAL_USE_PAL && EFI_PROD_CODE
// this should be initialized before detectBoardType()
efiExtiInit();
#endif // HAL_USE_PAL
}
void stopHardware() {
stopPedalPins();
#if EFI_PROD_CODE && (BOARD_EXT_GPIOCHIPS > 0)
stopSmartCsPins();
#endif /* (BOARD_EXT_GPIOCHIPS > 0) */
#if EFI_LOGIC_ANALYZER
stopLogicAnalyzerPins();
#endif /* EFI_LOGIC_ANALYZER */
#if EFI_EMULATE_POSITION_SENSORS
stopTriggerEmulatorPins();
#endif /* EFI_EMULATE_POSITION_SENSORS */
#if EFI_AUX_PID
stopVvtControlPins();
#endif /* EFI_AUX_PID */
}
/**
* This method is invoked both on ECU start and configuration change
*/
void startHardware() {
#if (HAL_USE_PAL && EFI_JOYSTICK)
startJoystickPins();
#endif /* HAL_USE_PAL && EFI_JOYSTICK */
#if EFI_SHAFT_POSITION_INPUT
validateTriggerInputs();
startTriggerDebugPins();
#endif // EFI_SHAFT_POSITION_INPUT
startPedalPins();
#if EFI_CAN_SUPPORT
startCanPins();
#endif /* EFI_CAN_SUPPORT */
}
// Weak link a stub so that every board doesn't have to implement this function
__attribute__((weak)) void boardInitHardware() { }
__attribute__((weak)) void setPinConfigurationOverrides() { }
#if HAL_USE_I2C
const I2CConfig i2cfg = {
OPMODE_I2C,
400000,
FAST_DUTY_CYCLE_2,
};
#endif
void initHardware() {
#if EFI_HD44780_LCD
lcd_HD44780_init();
if (hasFirmwareError())
return;
lcd_HD44780_print_string(VCS_VERSION);
#endif /* EFI_HD44780_LCD */
if (hasFirmwareError()) {
return;
}
#if STM32_I2C_USE_I2C3
if (engineConfiguration->useEeprom) {
i2cStart(&EE_U2CD, &i2cfg);
}
#endif // STM32_I2C_USE_I2C3
boardInitHardware();
#if HAL_USE_ADC
initAdcInputs();
// wait for first set of ADC values so that we do not produce invalid sensor data
waitForSlowAdc(1);
#endif /* HAL_USE_ADC */
#if EFI_SOFTWARE_KNOCK
initSoftwareKnock();
#endif /* EFI_SOFTWARE_KNOCK */
#if HAL_USE_SPI
initSpiModules(engineConfiguration);
#endif /* HAL_USE_SPI */
#if EFI_PROD_CODE && (BOARD_EXT_GPIOCHIPS > 0)
// initSmartGpio depends on 'initSpiModules'
initSmartGpio();
#endif
// output pins potentially depend on 'initSmartGpio'
initOutputPins();
#if EFI_ENGINE_CONTROL
enginePins.startPins();
#endif /* EFI_ENGINE_CONTROL */
#if EFI_MC33816
initMc33816();
#endif /* EFI_MC33816 */
#if EFI_MAX_31855
initMax31855(engineConfiguration->max31855spiDevice, engineConfiguration->max31855_cs);
#endif /* EFI_MAX_31855 */
#if EFI_CAN_SUPPORT
initCan();
#endif /* EFI_CAN_SUPPORT */
// init_adc_mcp3208(&adcState, &SPID2);
// requestAdcValue(&adcState, 0);
#if EFI_PROD_CODE && EFI_SHAFT_POSITION_INPUT
turnOnTriggerInputPins();
#endif /* EFI_SHAFT_POSITION_INPUT */
#if EFI_HIP_9011
initHip9011();
#endif /* EFI_HIP_9011 */
#if EFI_MEMS
initAccelerometer();
#endif
#if EFI_BOSCH_YAW
initBoschYawRateSensor();
#endif /* EFI_BOSCH_YAW */
#if EFI_UART_GPS
initGps();
#endif
#if EFI_AUX_SERIAL
initAuxSerial();
#endif /* EFI_AUX_SERIAL */
#if EFI_CAN_SUPPORT
initCanVssSupport();
#endif // EFI_CAN_SUPPORT
#if EFI_CDM_INTEGRATION
cdmIonInit();
#endif // EFI_CDM_INTEGRATION
#if (HAL_USE_PAL && EFI_JOYSTICK)
initJoystick();
#endif /* HAL_USE_PAL && EFI_JOYSTICK */
#if EFI_SENT_SUPPORT
initSent();
#endif
calcFastAdcIndexes();
startHardware();
efiPrintf("initHardware() OK!");
}
#if HAL_USE_SPI
// this is F4 implementation but we will keep it here for now for simplicity
int getSpiPrescaler(spi_speed_e speed, spi_device_e device) {
switch (speed) {
case _5MHz:
return device == SPI_DEVICE_1 ? SPI_BaudRatePrescaler_16 : SPI_BaudRatePrescaler_8;
case _2_5MHz:
return device == SPI_DEVICE_1 ? SPI_BaudRatePrescaler_32 : SPI_BaudRatePrescaler_16;
case _1_25MHz:
return device == SPI_DEVICE_1 ? SPI_BaudRatePrescaler_64 : SPI_BaudRatePrescaler_32;
case _150KHz:
// SPI1 does not support 150KHz, it would be 300KHz for SPI1
return SPI_BaudRatePrescaler_256;
default:
// unexpected
return 0;
}
}
#endif /* HAL_USE_SPI */