rusefi/firmware/util/efilib.cpp

400 lines
8.5 KiB
C++

/**
* @file efilib.cpp
*
* We cannot use stdlib because we do not have malloc - so, we have to implement these functions
*
* @date Feb 21, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include <string.h>
#include <math.h>
#include "efilib.h"
#include "datalogging.h"
#include "histogram.h"
#include "error_handling.h"
const char * boolToString(bool value) {
return value ? "Yes" : "No";
}
int minI(int i1, int i2) {
return i1 < i2 ? i1 : i2;
}
/*
float efiFloor(float value, float precision) {
int a = (int) (value / precision);
return a * precision;
}
*/
/**
*
* @param precision for example '0.1' for one digit fractional part
*/
float efiRound(float value, float precision) {
efiAssert(CUSTOM_ERR_ASSERT, precision != 0, "zero precision", NAN);
float a = round(value / precision);
return fixNegativeZero(a * precision);
}
float absF(float value) {
return value > 0 ? value : -value;
}
int absI(int32_t value) {
return value >= 0 ? value : -value;
}
int maxI(int i1, int i2) {
return i1 > i2 ? i1 : i2;
}
float maxF(float i1, float i2) {
return i1 > i2 ? i1 : i2;
}
float minF(float i1, float i2) {
return i1 < i2 ? i1 : i2;
}
float clampF(float min, float clamp, float max) {
return maxF(min, minF(clamp, max));
}
uint32_t efiStrlen(const char *param) {
const char *s;
for (s = param; *s; ++s)
;
return (s - param);
}
char * efiTrim(char *param) {
while (param[0] == ' ') {
param++; // that would skip leading spaces
}
int len = efiStrlen(param);
while (len > 0 && param[len - 1] == ' ') {
param[len - 1] = 0;
len--;
}
return param;
}
bool startsWith(const char *line, const char *prefix) {
uint32_t len = efiStrlen(prefix);
if (efiStrlen(line) < len) {
return false;
}
for (uint32_t i = 0; i < len; i++) {
if (line[i] != prefix[i]) {
return false;
}
}
return true;
}
int indexOf(const char *string, char ch) {
// a standard function for this is strnchr?
// todo: on the other hand MISRA wants us not to use standard headers
int len = efiStrlen(string);
for (int i = 0; i < len; i++) {
if (string[i] == ch) {
return i;
}
}
return -1;
}
// string to integer
int atoi(const char *string) {
// todo: use stdlib '#include <stdlib.h> '
int len = strlen(string);
if (len == 0) {
return -ERROR_CODE;
}
if (string[0] == '-') {
return -atoi(string + 1);
}
int result = 0;
for (int i = 0; i < len; i++) {
char ch = string[i];
if (ch < '0' || ch > '9') {
return ERROR_CODE;
}
int c = ch - '0';
result = result * 10 + c;
}
return result;
}
static char todofixthismesswithcopy[100];
static char *ltoa_internal(char *p, uint32_t num, unsigned radix) {
constexpr int bufferLength = 10;
char buffer[bufferLength];
size_t idx = bufferLength - 1;
// First, we write from right-to-left so that we don't have to compute
// log(num)/log(radix)
do
{
auto digit = num % radix;
// Digits 0-9 -> '0'-'9'
// Digits 10-15 -> 'a'-'f'
char c = digit < 10
? digit + '0'
: digit + 'a' - 10;
// Write this digit in to the buffer
buffer[idx] = c;
idx--;
} while ((num /= radix) != 0);
idx++;
// Now, we copy characters in to place in the final buffer
while (idx < bufferLength)
{
*p++ = buffer[idx++];
}
return p;
}
/**
* @return pointer at the end zero symbol after the digits
*/
static char* itoa_signed(char *p, int num, unsigned radix) {
if (num < 0) {
*p++ = '-';
char *end = ltoa_internal(p, -num, radix);
*end = 0;
return end;
}
char *end = ltoa_internal(p, num, radix);
*end = 0;
return end;
}
/**
* Integer to string
*
* @return pointer at the end zero symbol after the digits
*/
char* itoa10(char *p, int num) {
// todo: unit test
return itoa_signed(p, num, 10);
}
#define EPS 0.0001
bool isSameF(float v1, float v2) {
return absF(v1 - v2) < EPS;
}
int efiPow10(int param) {
switch (param) {
case 0:
return 1;
case 1:
return 10;
case 2:
return 100;
case 3:
return 1000;
case 4:
return 10000;
case 5:
return 100000;
case 6:
return 1000000;
case 7:
return 10000000;
case 8:
return 100000000;
}
return 10 * efiPow10(10 - 1);
}
/**
* string to float. NaN input is supported
*
* @return NAN in case of invalid string
* todo: explicit value for error code? probably not, NaN is only returned in case of an error
*/
float atoff(const char *param) {
uint32_t totallen = strlen(param);
if (totallen > sizeof(todofixthismesswithcopy) - 1)
return (float) NAN;
strcpy(todofixthismesswithcopy, param);
char *string = todofixthismesswithcopy;
if (indexOf(string, 'n') != -1 || indexOf(string, 'N') != -1) {
#if ! EFI_SIMULATOR
efiPrintf("NAN from [%s]", string);
#endif
return (float) NAN;
}
// todo: is there a standard function?
// unit-tested by 'testMisc()'
int dotIndex = indexOf(string, '.');
if (dotIndex == -1) {
// just an integer
int result = atoi(string);
if (absI(result) == ERROR_CODE)
return (float) NAN;
return (float) result;
}
// todo: this needs to be fixed
string[dotIndex] = 0;
int integerPart = atoi(string);
if (absI(integerPart) == ERROR_CODE)
return (float) NAN;
string += (dotIndex + 1);
int decimalLen = strlen(string);
int decimal = atoi(string);
if (absI(decimal) == ERROR_CODE)
return (float) NAN;
float divider = 1.0;
// todo: reuse 'pow10' function which we have anyway
for (int i = 0; i < decimalLen; i++) {
divider = divider * 10.0;
}
return integerPart + decimal / divider;
}
#define TO_LOWER(x) (((x)>='A' && (x)<='Z') ? (x) - 'A' + 'a' : (x))
bool strEqualCaseInsensitive(const char *str1, const char *str2) {
int len1 = strlen(str1);
int len2 = strlen(str2);
if (len1 != len2) {
return false;
}
for (int i = 0; i < len1; i++)
if (TO_LOWER(str1[i]) != TO_LOWER(str2[i]))
return false;
return true;
}
/*
** return lower-case of c if upper-case, else c
*/
int mytolower(const char c) {
return TO_LOWER(c);
}
bool strEqual(const char *str1, const char *str2) {
// todo: there must be a standard function?!
int len1 = strlen(str1);
int len2 = strlen(str2);
if (len1 != len2) {
return false;
}
for (int i = 0; i < len1; i++)
if (str1[i] != str2[i])
return false;
return true;
}
/**
* @brief This function knows how to print a histogram_s summary
*/
void printHistogram(Logging *logging, histogram_s *histogram) {
#if EFI_HISTOGRAMS && ! EFI_UNIT_TEST
int report[5];
int len = hsReport(histogram, report);
logging->reset();
appendMsgPrefix(logging);
logging.appendPrintf("histogram %s *", histogram->name);
for (int i = 0; i < len; i++)
logging.appendPrintf("%d ", report[i]);
logging.appendPrintf("*");
appendMsgPostfix(logging);
scheduleLogging(logging);
#else
UNUSED(logging);
UNUSED(histogram);
#endif /* EFI_HISTOGRAMS */
}
float limitRateOfChange(float newValue, float oldValue, float incrLimitPerSec, float decrLimitPerSec, float secsPassed) {
if (newValue >= oldValue)
return (incrLimitPerSec <= 0.0f) ? newValue : oldValue + minF(newValue - oldValue, incrLimitPerSec * secsPassed);
return (decrLimitPerSec <= 0.0f) ? newValue : oldValue - minF(oldValue - newValue, decrLimitPerSec * secsPassed);
}
constexpr float constant_e = 2.71828f;
// 'constexpr' is a keyword that tells the compiler
// "yes, this thing, it's a 'pure function' that only depends on its inputs and has no side effects"
// like how const is a constant value, constexpr is a constant expression
// so if somewhere you used it in a way that it could determine the exact arguments to the function at compile time, it will _run_ the function at compile time, and cook in the result as a constant
constexpr float expf_taylor_impl(float x, uint8_t n)
{
if (x < -2)
{
return 0.818f;
}
else if (x > 0)
{
return 1;
}
x = x + 1;
float x_power = x;
int fac = 1;
float sum = 1;
for (int i = 1; i <= n; i++)
{
fac *= i;
sum += x_power / fac;
x_power *= x;
}
return sum / constant_e;
}
float expf_taylor(float x)
{
return expf_taylor_impl(x, 4);
}
float tanf_taylor(float x) {
// This exists because the "normal" implementation, tanf, pulls in like 6kb of
// code and loookup tables
// This is only specified from [0, pi/2 - 0.01)
// Inside that range it has an error of less than 0.1%, and it gets worse as theta -> pi/2
// Precompute some exponents of x
float x2 = x * x;
float x3 = x2 * x;
float x4 = x3 * x;
float x5 = x4 * x;
float x6 = x5 * x;
// x7 not used
float x8 = x6 * x2;
// 3-term Taylor Series for sin(theta)
float sin_val = x - (x3 / 6) + (x5 / 120);
// 5-term Taylor Series for cos(theta)
float cos_val = 1 - (x2 / 2) + (x4 / 24) - (x6 / 720) + (x8 / 40320);
// tan = sin / cos
return sin_val / cos_val;
}