rusefi/firmware/controllers/math/engine_math.cpp

478 lines
14 KiB
C++

/**
* @file engine_math.cpp
* @brief
*
* @date Jul 13, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "pch.h"
#include "event_registry.h"
#include "fuel_math.h"
#include "advance_map.h"
#include "gppwm_channel.h"
#if EFI_UNIT_TEST
extern bool verboseMode;
#endif /* EFI_UNIT_TEST */
floatms_t getEngineCycleDuration(int rpm) {
return getCrankshaftRevolutionTimeMs(rpm) * (getEngineRotationState()->getOperationMode() == TWO_STROKE ? 1 : 2);
}
/**
* @return number of milliseconds in one crank shaft revolution
*/
floatms_t getCrankshaftRevolutionTimeMs(int rpm) {
if (rpm == 0) {
return NAN;
}
return 360 * getOneDegreeTimeMs(rpm);
}
float getFuelingLoad() {
return getEngineState()->fuelingLoad;
}
float getIgnitionLoad() {
return getEngineState()->ignitionLoad;
}
/**
* see also setConstantDwell
*/
void setSingleCoilDwell() {
for (int i = 0; i < DWELL_CURVE_SIZE; i++) {
config->sparkDwellRpmBins[i] = (i + 1) * 50;
config->sparkDwellValues[i] = 4;
}
config->sparkDwellRpmBins[5] = 500;
config->sparkDwellValues[5] = 4;
config->sparkDwellRpmBins[6] = 4500;
config->sparkDwellValues[6] = 4;
config->sparkDwellRpmBins[7] = 12500;
config->sparkDwellValues[7] = 0;
}
/**
* @return Spark dwell time, in milliseconds. 0 if tables are not ready.
*/
floatms_t IgnitionState::getSparkDwell(int rpm) {
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
float dwellMs;
if (engine->rpmCalculator.isCranking()) {
dwellMs = engineConfiguration->ignitionDwellForCrankingMs;
} else {
efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(rpm), "invalid rpm", NAN);
baseDwell = interpolate2d(rpm, config->sparkDwellRpmBins, config->sparkDwellValues);
dwellVoltageCorrection = interpolate2d(
Sensor::getOrZero(SensorType::BatteryVoltage),
engineConfiguration->dwellVoltageCorrVoltBins,
engineConfiguration->dwellVoltageCorrValues
);
// for compat (table full of zeroes)
if (dwellVoltageCorrection < 0.1f) {
dwellVoltageCorrection = 1;
}
dwellMs = baseDwell * dwellVoltageCorrection;
}
if (cisnan(dwellMs) || dwellMs <= 0) {
// this could happen during engine configuration reset
warning(ObdCode::CUSTOM_ERR_DWELL_DURATION, "invalid dwell: %.2f at rpm=%d", dwellMs, rpm);
return 0;
}
return dwellMs;
#else
return 0;
#endif
}
static const uint8_t order_1[] = {1};
static const uint8_t order_1_2[] = {1, 2};
static const uint8_t order_1_2_3[] = {1, 2, 3};
static const uint8_t order_1_3_2[] = {1, 3, 2};
// 4 cylinder
static const uint8_t order_1_THEN_3_THEN_4_THEN2[] = { 1, 3, 4, 2 };
static const uint8_t order_1_THEN_2_THEN_4_THEN3[] = { 1, 2, 4, 3 };
static const uint8_t order_1_THEN_3_THEN_2_THEN4[] = { 1, 3, 2, 4 };
static const uint8_t order_1_THEN_4_THEN_3_THEN2[] = { 1, 4, 3, 2 };
// 5 cylinder
static const uint8_t order_1_2_4_5_3[] = {1, 2, 4, 5, 3};
// 6 cylinder
static const uint8_t order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[] = { 1, 5, 3, 6, 2, 4 };
static const uint8_t order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6[] = { 1, 4, 2, 5, 3, 6 };
static const uint8_t order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6[] = { 1, 2, 3, 4, 5, 6 };
static const uint8_t order_1_6_3_2_5_4[] = {1, 6, 3, 2, 5, 4};
static const uint8_t order_1_4_3_6_2_5[] = {1, 4, 3, 6, 2, 5};
static const uint8_t order_1_6_2_4_3_5[] = {1, 6, 2, 4, 3, 5};
static const uint8_t order_1_6_5_4_3_2[] = {1, 6, 5, 4, 3, 2};
static const uint8_t order_1_4_5_2_3_6[] = {1, 4, 5, 2, 3, 6};
// 8 cylinder
static const uint8_t order_1_8_4_3_6_5_7_2[] = { 1, 8, 4, 3, 6, 5, 7, 2 };
static const uint8_t order_1_8_7_2_6_5_4_3[] = { 1, 8, 7, 2, 6, 5, 4, 3 };
static const uint8_t order_1_5_4_2_6_3_7_8[] = { 1, 5, 4, 2, 6, 3, 7, 8 };
static const uint8_t order_1_2_7_8_4_5_6_3[] = { 1, 2, 7, 8, 4, 5, 6, 3 };
static const uint8_t order_1_3_7_2_6_5_4_8[] = { 1, 3, 7, 2, 6, 5, 4, 8 };
static const uint8_t order_1_2_3_4_5_6_7_8[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
static const uint8_t order_1_5_4_8_6_3_7_2[] = { 1, 5, 4, 8, 6, 3, 7, 2 };
static const uint8_t order_1_8_7_3_6_5_4_2[] = { 1, 8, 7, 3, 6, 5, 4, 2 };
static const uint8_t order_1_5_4_8_3_7_2_6[] = { 1, 5, 4, 8, 3, 7, 2, 6 };
// 9 cylinder
static const uint8_t order_1_2_3_4_5_6_7_8_9[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// 10 cylinder
static const uint8_t order_1_10_9_4_3_6_5_8_7_2[] = {1, 10, 9, 4, 3, 6, 5, 8, 7, 2};
// 12 cyliner
static const uint8_t order_1_7_5_11_3_9_6_12_2_8_4_10[] = {1, 7, 5, 11, 3, 9, 6, 12, 2, 8, 4, 10};
static const uint8_t order_1_7_4_10_2_8_6_12_3_9_5_11[] = {1, 7, 4, 10, 2, 8, 6, 12, 3, 9, 5, 11};
static const uint8_t order_1_12_5_8_3_10_6_7_2_11_4_9[] = {1, 12, 5, 8, 3, 10, 6, 7, 2, 11, 4, 9};
static const uint8_t order_1_2_3_4_5_6_7_8_9_10_11_12[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
// no comments
static const uint8_t order_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10[] = {1, 14, 9, 4, 7, 12, 15, 6, 13, 8, 3, 16, 11, 2, 5, 10};
static size_t getFiringOrderLength() {
switch (engineConfiguration->firingOrder) {
case FO_1:
return 1;
// 2 cylinder
case FO_1_2:
return 2;
// 3 cylinder
case FO_1_2_3:
case FO_1_3_2:
return 3;
// 4 cylinder
case FO_1_3_4_2:
case FO_1_2_4_3:
case FO_1_3_2_4:
case FO_1_4_3_2:
return 4;
// 5 cylinder
case FO_1_2_4_5_3:
return 5;
// 6 cylinder
case FO_1_5_3_6_2_4:
case FO_1_4_2_5_3_6:
case FO_1_2_3_4_5_6:
case FO_1_6_3_2_5_4:
case FO_1_4_3_6_2_5:
case FO_1_6_2_4_3_5:
case FO_1_6_5_4_3_2:
case FO_1_4_5_2_3_6:
return 6;
// 8 cylinder
case FO_1_8_4_3_6_5_7_2:
case FO_1_8_7_2_6_5_4_3:
case FO_1_5_4_2_6_3_7_8:
case FO_1_2_7_8_4_5_6_3:
case FO_1_3_7_2_6_5_4_8:
case FO_1_2_3_4_5_6_7_8:
case FO_1_5_4_8_6_3_7_2:
case FO_1_8_7_3_6_5_4_2:
case FO_1_5_4_8_3_7_2_6:
return 8;
// 9 cylinder radial
case FO_1_2_3_4_5_6_7_8_9:
return 9;
// 10 cylinder
case FO_1_10_9_4_3_6_5_8_7_2:
return 10;
// 12 cylinder
case FO_1_7_5_11_3_9_6_12_2_8_4_10:
case FO_1_7_4_10_2_8_6_12_3_9_5_11:
case FO_1_12_5_8_3_10_6_7_2_11_4_9:
case FO_1_2_3_4_5_6_7_8_9_10_11_12:
return 12;
case FO_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10:
return 16;
default:
firmwareError(ObdCode::CUSTOM_OBD_UNKNOWN_FIRING_ORDER, "Invalid firing order: %d", engineConfiguration->firingOrder);
}
return 1;
}
static const uint8_t* getFiringOrderTable() {
switch (engineConfiguration->firingOrder) {
case FO_1:
return order_1;
// 2 cylinder
case FO_1_2:
return order_1_2;
// 3 cylinder
case FO_1_2_3:
return order_1_2_3;
case FO_1_3_2:
return order_1_3_2;
// 4 cylinder
case FO_1_3_4_2:
return order_1_THEN_3_THEN_4_THEN2;
case FO_1_2_4_3:
return order_1_THEN_2_THEN_4_THEN3;
case FO_1_3_2_4:
return order_1_THEN_3_THEN_2_THEN4;
case FO_1_4_3_2:
return order_1_THEN_4_THEN_3_THEN2;
// 5 cylinder
case FO_1_2_4_5_3:
return order_1_2_4_5_3;
// 6 cylinder
case FO_1_5_3_6_2_4:
return order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4;
case FO_1_4_2_5_3_6:
return order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6;
case FO_1_2_3_4_5_6:
return order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6;
case FO_1_6_3_2_5_4:
return order_1_6_3_2_5_4;
case FO_1_4_3_6_2_5:
return order_1_4_3_6_2_5;
case FO_1_6_2_4_3_5:
return order_1_6_2_4_3_5;
case FO_1_6_5_4_3_2:
return order_1_6_5_4_3_2;
case FO_1_4_5_2_3_6:
return order_1_4_5_2_3_6;
// 8 cylinder
case FO_1_8_4_3_6_5_7_2:
return order_1_8_4_3_6_5_7_2;
case FO_1_8_7_2_6_5_4_3:
return order_1_8_7_2_6_5_4_3;
case FO_1_5_4_2_6_3_7_8:
return order_1_5_4_2_6_3_7_8;
case FO_1_2_7_8_4_5_6_3:
return order_1_2_7_8_4_5_6_3;
case FO_1_3_7_2_6_5_4_8:
return order_1_3_7_2_6_5_4_8;
case FO_1_2_3_4_5_6_7_8:
return order_1_2_3_4_5_6_7_8;
case FO_1_5_4_8_6_3_7_2:
return order_1_5_4_8_6_3_7_2;
case FO_1_8_7_3_6_5_4_2:
return order_1_8_7_3_6_5_4_2;
case FO_1_5_4_8_3_7_2_6:
return order_1_5_4_8_3_7_2_6;
// 9 cylinder
case FO_1_2_3_4_5_6_7_8_9:
return order_1_2_3_4_5_6_7_8_9;
// 10 cylinder
case FO_1_10_9_4_3_6_5_8_7_2:
return order_1_10_9_4_3_6_5_8_7_2;
// 12 cylinder
case FO_1_7_5_11_3_9_6_12_2_8_4_10:
return order_1_7_5_11_3_9_6_12_2_8_4_10;
case FO_1_7_4_10_2_8_6_12_3_9_5_11:
return order_1_7_4_10_2_8_6_12_3_9_5_11;
case FO_1_12_5_8_3_10_6_7_2_11_4_9:
return order_1_12_5_8_3_10_6_7_2_11_4_9;
case FO_1_2_3_4_5_6_7_8_9_10_11_12:
return order_1_2_3_4_5_6_7_8_9_10_11_12;
// do not ask
case FO_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10:
return order_1_14_9_4_7_12_15_6_13_8_3_16_11_2_5_10;
default:
firmwareError(ObdCode::CUSTOM_OBD_UNKNOWN_FIRING_ORDER, "Invalid firing order: %d", engineConfiguration->firingOrder);
}
return NULL;
}
/**
* @param index from zero to cylindersCount - 1
* @return cylinderId from one to cylindersCount
*/
size_t getFiringOrderCylinderId(size_t index) {
const size_t firingOrderLength = getFiringOrderLength();
if (firingOrderLength < 1 || firingOrderLength > MAX_CYLINDER_COUNT) {
firmwareError(ObdCode::CUSTOM_FIRING_LENGTH, "fol %d", firingOrderLength);
return 1;
}
if (engineConfiguration->cylindersCount != firingOrderLength) {
// May 2020 this somehow still happens with functional tests, maybe race condition?
firmwareError(ObdCode::CUSTOM_OBD_WRONG_FIRING_ORDER, "Wrong cyl count for firing order, expected %d cylinders", firingOrderLength);
return 1;
}
if (index >= firingOrderLength) {
// May 2020 this somehow still happens with functional tests, maybe race condition?
warning(ObdCode::CUSTOM_ERR_6686, "firing order index %d", index);
return 1;
}
if (auto firingOrderTable = getFiringOrderTable()) {
return firingOrderTable[index];
} else {
// error already reported
return 1;
}
}
/**
* @param prevCylinderId from one to cylindersCount
* @return cylinderId from one to cylindersCount
*/
size_t getNextFiringCylinderId(size_t prevCylinderId) {
const size_t firingOrderLength = getFiringOrderLength();
auto firingOrderTable = getFiringOrderTable();
if (firingOrderTable) {
for (size_t i = 0; i < firingOrderLength; i++) {
if (firingOrderTable[i] == prevCylinderId) {
return firingOrderTable[(i + 1) % firingOrderLength];
}
}
}
return 1;
}
/**
* @return IM_WASTED_SPARK if in SPINNING mode and IM_INDIVIDUAL_COILS setting
* @return engineConfiguration->ignitionMode otherwise
*/
ignition_mode_e getCurrentIgnitionMode() {
ignition_mode_e ignitionMode = engineConfiguration->ignitionMode;
#if EFI_SHAFT_POSITION_INPUT
// In spin-up cranking mode we don't have full phase sync info yet, so wasted spark mode is better
// However, only do this on even cylinder count engines: odd cyl count doesn't fire at all
if (ignitionMode == IM_INDIVIDUAL_COILS && (engineConfiguration->cylindersCount % 2 == 0)) {
bool missingPhaseInfoForSequential =
!engine->triggerCentral.triggerState.hasSynchronizedPhase();
if (!engineConfiguration->oddFireEngine && (engine->rpmCalculator.isSpinningUp() || missingPhaseInfoForSequential)) {
ignitionMode = IM_WASTED_SPARK;
}
}
#endif /* EFI_SHAFT_POSITION_INPUT */
return ignitionMode;
}
#if EFI_ENGINE_CONTROL
/**
* This heavy method is only invoked in case of a configuration change or initialization.
*/
void prepareOutputSignals() {
getEngineState()->engineCycle = getEngineCycle(getEngineRotationState()->getOperationMode());
#if EFI_UNIT_TEST
if (verboseMode) {
printf("prepareOutputSignals %d %s\r\n", engineConfiguration->trigger.type, getIgnition_mode_e(engineConfiguration->ignitionMode));
}
#endif /* EFI_UNIT_TEST */
#if EFI_SHAFT_POSITION_INPUT
engine->triggerCentral.prepareTriggerShape();
#endif // EFI_SHAFT_POSITION_INPUT
// Fuel schedule may now be completely wrong, force a reset
engine->injectionEvents.invalidate();
}
angle_t getPerCylinderFiringOrderOffset(uint8_t cylinderIndex, uint8_t cylinderNumber) {
// base = position of this cylinder in the firing order.
// We get a cylinder every n-th of an engine cycle where N is the number of cylinders
auto firingOrderOffset = engine->engineState.engineCycle * cylinderIndex / engineConfiguration->cylindersCount;
// Plus or minus any adjustment if this is an odd-fire engine
auto adjustment = engineConfiguration->timing_offset_cylinder[cylinderNumber];
auto result = firingOrderOffset + adjustment;
assertAngleRange(result, "getCylinderAngle", ObdCode::CUSTOM_ERR_CYL_ANGLE);
return result;
}
void setTimingRpmBin(float from, float to) {
setRpmBin(config->ignitionRpmBins, IGN_RPM_COUNT, from, to);
}
/**
* this method sets algorithm and ignition table scale
*/
void setAlgorithm(engine_load_mode_e algo) {
engineConfiguration->fuelAlgorithm = algo;
}
void setFlatInjectorLag(float value) {
setArrayValues(engineConfiguration->injector.battLagCorr, value);
}
BlendResult calculateBlend(blend_table_s& cfg, float rpm, float load) {
// If set to 0, skip the math as its disabled
if (cfg.blendParameter == GPPWM_Zero) {
return { 0, 0, 0 };
}
auto value = readGppwmChannel(cfg.blendParameter);
if (!value) {
return { 0, 0, 0 };
}
// Override Y axis value (if necessary)
if (cfg.yAxisOverride != GPPWM_Zero) {
// TODO: is this value_or(0) correct or even reasonable?
load = readGppwmChannel(cfg.yAxisOverride).value_or(0);
}
float tableValue = interpolate3d(
cfg.table,
cfg.loadBins, load,
cfg.rpmBins, rpm
);
float blendFactor = interpolate2d(value.Value, cfg.blendBins, cfg.blendValues);
return { value.Value, blendFactor, 0.01f * blendFactor * tableValue };
}
#endif /* EFI_ENGINE_CONTROL */