rusefi/firmware/console/eficonsole.cpp

264 lines
7.8 KiB
C++

/**
* @file eficonsole.cpp
* @brief Console package entry point code
*
*
* @date Nov 15, 2012
* @author Andrey Belomutskiy, (c) 2012-2020
*
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "pch.h"
#include "eficonsole.h"
#include "console_io.h"
#include "mpu_util.h"
#include "svnversion.h"
static void testCritical() {
chDbgCheck(0);
}
static void myerror() {
firmwareError(ObdCode::CUSTOM_ERR_TEST_ERROR, "firmwareError: %d", getRusEfiVersion());
}
static void testHardFault() {
causeHardFault();
}
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
static void printUid() {
uint32_t *uid = ((uint32_t *)UID_BASE);
efiPrintf("UID=%x:%x:%x", uid[0], uid[1], uid[2]);
engineConfiguration->device_uid[0] = uid[0];
engineConfiguration->device_uid[1] = uid[1];
engineConfiguration->device_uid[2] = uid[2];
}
#endif
static void sayHello() {
efiPrintf(PROTOCOL_HELLO_PREFIX " rusEFI LLC (c) 2012-2024. All rights reserved.");
efiPrintf(PROTOCOL_HELLO_PREFIX " rusEFI v%d@%s now=%d", getRusEfiVersion(), VCS_VERSION, getTimeNowMs());
efiPrintf(PROTOCOL_HELLO_PREFIX " Chibios Kernel: %s", CH_KERNEL_VERSION);
efiPrintf(PROTOCOL_HELLO_PREFIX " Compiled: " __DATE__ " - " __TIME__ "");
efiPrintf(PROTOCOL_HELLO_PREFIX " COMPILER=%s", __VERSION__);
#if EFI_USE_OPENBLT
efiPrintf(PROTOCOL_HELLO_PREFIX " with OPENBLT");
#endif
#if EFI_PROD_CODE && ENABLE_AUTO_DETECT_HSE
extern float hseFrequencyMhz;
extern uint8_t autoDetectedRoundedMhz;
efiPrintf(PROTOCOL_HELLO_PREFIX " detected HSE clock %.2f MHz PLLM = %d", hseFrequencyMhz, autoDetectedRoundedMhz);
#endif /* ENABLE_AUTO_DETECT_HSE */
efiPrintf("hellenBoardId=%d", engine->engineState.hellenBoardId);
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
printUid();
#if defined(STM32F4) && !defined(AT32F4XX)
efiPrintf("can read 0x20000010 %d", ramReadProbe((const char *)0x20000010));
efiPrintf("can read 0x20020010 %d", ramReadProbe((const char *)0x20020010));
efiPrintf("can read 0x20070010 %d", ramReadProbe((const char *)0x20070010));
efiPrintf("isStm32F42x %s", boolToString(isStm32F42x()));
#endif // STM32F4
#ifndef MIN_FLASH_SIZE
#define MIN_FLASH_SIZE 1024
#endif // MIN_FLASH_SIZE
int flashSize = TM_ID_GetFlashSize();
if (flashSize < MIN_FLASH_SIZE) {
// todo: bug, at the moment we report 1MB on dual-bank F7
criticalError("rusEFI expected at least %dK of flash", MIN_FLASH_SIZE);
}
#ifdef AT32F4XX
int mcuRevision = DBGMCU->SERID & 0x07;
int mcuSerId = (DBGMCU->SERID >> 8) & 0xff;
const char *partNumber, *package;
uint32_t pnFlashSize;
int ret = at32GetMcuType(DBGMCU->IDCODE, &partNumber, &package, &pnFlashSize);
if (ret == 0) {
efiPrintf("MCU IDCODE %s in %s with %d KB flash",
partNumber, package, pnFlashSize);
} else {
efiPrintf("MCU IDCODE unknown 0x%x", DBGMCU->IDCODE);
}
efiPrintf("MCU SER_ID %s rev %c",
(mcuSerId == 0x0d) ? "AT32F435" : ((mcuSerId == 0x0e) ? "AT32F437" : "UNKNOWN"),
'A' + mcuRevision);
efiPrintf("MCU F_SIZE %d KB", flashSize);
efiPrintf("MCU RAM %d KB", at32GetRamSizeKb());
#else
#define MCU_REVISION_MASK 0xfff
int mcuRevision = DBGMCU->IDCODE & MCU_REVISION_MASK;
efiPrintf("MCU rev=%x flashSize=%d", mcuRevision, flashSize);
#endif
#endif
#ifdef CH_CFG_ST_FREQUENCY
efiPrintf("CH_CFG_ST_FREQUENCY=%d", CH_CFG_ST_FREQUENCY);
#endif
#ifdef ENABLE_PERF_TRACE
efiPrintf("ENABLE_PERF_TRACE=%d", ENABLE_PERF_TRACE);
#endif
#ifdef STM32_ADCCLK
efiPrintf("STM32_ADCCLK=%d", STM32_ADCCLK);
efiPrintf("STM32_TIMCLK1=%d", STM32_TIMCLK1);
efiPrintf("STM32_TIMCLK2=%d", STM32_TIMCLK2);
#endif
#ifdef STM32_PCLK1
efiPrintf("STM32_PCLK1=%d", STM32_PCLK1);
efiPrintf("STM32_PCLK2=%d", STM32_PCLK2);
#endif
efiPrintf("PORT_IDLE_THREAD_STACK_SIZE=%d", PORT_IDLE_THREAD_STACK_SIZE);
efiPrintf("CH_DBG_ENABLE_ASSERTS=%d", CH_DBG_ENABLE_ASSERTS);
#ifdef CH_DBG_ENABLED
efiPrintf("CH_DBG_ENABLED=%d", CH_DBG_ENABLED);
#endif
efiPrintf("CH_DBG_SYSTEM_STATE_CHECK=%d", CH_DBG_SYSTEM_STATE_CHECK);
efiPrintf("CH_DBG_ENABLE_STACK_CHECK=%d", CH_DBG_ENABLE_STACK_CHECK);
#ifdef EFI_LOGIC_ANALYZER
efiPrintf("EFI_LOGIC_ANALYZER=%d", EFI_LOGIC_ANALYZER);
#endif
#ifdef EFI_TUNER_STUDIO
efiPrintf("EFI_TUNER_STUDIO=%d", EFI_TUNER_STUDIO);
#else
efiPrintf("EFI_TUNER_STUDIO=%d", 0);
#endif
#if defined(EFI_SHAFT_POSITION_INPUT)
efiPrintf("EFI_SHAFT_POSITION_INPUT=%d", EFI_SHAFT_POSITION_INPUT);
#endif
#ifdef EFI_INTERNAL_ADC
efiPrintf("EFI_INTERNAL_ADC=%d", EFI_INTERNAL_ADC);
#endif
/**
* Time to finish output. This is needed to avoid mix-up of this methods output and console command confirmation
* this code here dates back to 2015. today in 2024 I have no idea what it does :(
*/
chThdSleepMilliseconds(5);
}
#if CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS
int CountFreeStackSpace(const void* wabase) {
const uint8_t* stackBase = reinterpret_cast<const uint8_t*>(wabase);
const uint8_t* stackUsage = stackBase;
// thread stacks are filled with CH_DBG_STACK_FILL_VALUE
// find out where that ends - that's the last thing we needed on the stack
while (*stackUsage == CH_DBG_STACK_FILL_VALUE) {
stackUsage++;
}
return (int)(stackUsage - stackBase);
}
#endif
/**
* This methods prints all threads, their stack usage, and their total times
*/
static void cmd_threads() {
#if CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS
thread_t* tp = chRegFirstThread();
efiPrintf("name\twabase\ttime\tfree stack");
while (tp) {
int freeBytes = CountFreeStackSpace(tp->wabase);
efiPrintf("%s\t%08x\t%lu\t%d", tp->name, tp->wabase, tp->time, freeBytes);
if (freeBytes < 100) {
criticalError("Ran out of stack on thread %s, %d bytes remain", tp->name, freeBytes);
}
tp = chRegNextThread(tp);
}
int isrSpace = CountFreeStackSpace(reinterpret_cast<void*>(0x20000000));
efiPrintf("isr\t0\t0\t%d", isrSpace);
#else // CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS
efiPrintf("CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS is not enabled");
#endif
}
/**
* @brief This is just a test function
*/
static void echo(int value) {
efiPrintf("got value: %d", value);
}
void checkStackAndHandleConsoleLine(char *line) {
assertStackVoid("console", ObdCode::STACK_USAGE_MISC, EXPECTED_REMAINING_STACK);
handleConsoleLine(line);
}
void onCliCaseError(const char *token) {
firmwareError(ObdCode::CUSTOM_ERR_COMMAND_LOWER_CASE_EXPECTED, "lowerCase expected [%s]", token);
}
void onCliDuplicateError(const char *token) {
firmwareError(ObdCode::CUSTOM_SAME_TWICE, "Same action twice [%s]", token);
}
void onCliOverflowError() {
firmwareError(ObdCode::CUSTOM_CONSOLE_TOO_MANY, "Too many console actions");
}
void initializeConsole() {
initConsoleLogic();
startConsole(&handleConsoleLine);
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
addConsoleAction("uid", printUid);
#endif
sayHello();
addConsoleAction("test", [](){ /* do nothing */});
addConsoleActionI("echo", echo);
addConsoleAction("hello", sayHello);
#if EFI_HAS_RESET
addConsoleAction("reset", scheduleReset);
#endif
addConsoleAction("critical", testCritical);
addConsoleAction("error", myerror);
addConsoleAction("hard_fault", testHardFault);
addConsoleAction("threadsinfo", cmd_threads);
#if HAL_USE_WDG
addConsoleActionI("set_watchdog_timeout", startWatchdog);
addConsoleActionI("set_watchdog_reset", setWatchdogResetPeriod);
#endif
}