893 lines
24 KiB
C++
893 lines
24 KiB
C++
/**
|
||
* @file electronic_throttle.cpp
|
||
* @brief Electronic Throttle driver
|
||
*
|
||
* @see test test_etb.cpp
|
||
*
|
||
*
|
||
* Limited user documentation at https://github.com/rusefi/rusefi/wiki/HOWTO_electronic_throttle_body
|
||
*
|
||
* todo: make this more universal if/when we get other hardware options
|
||
*
|
||
* May 2020 two vehicles have driver 500 miles each
|
||
* Sep 2019 two-wire TLE9201 official driving around the block! https://www.youtube.com/watch?v=1vCeICQnbzI
|
||
* May 2019 two-wire TLE7209 now behaves same as three-wire VNH2SP30 "eBay red board" on BOSCH 0280750009
|
||
* Apr 2019 two-wire TLE7209 support added
|
||
* Mar 2019 best results so far achieved with three-wire H-bridges like VNH2SP30 on BOSCH 0280750009
|
||
* Jan 2019 actually driven around the block but still need some work.
|
||
* Jan 2017 status:
|
||
* Electronic throttle body with it's spring is definitely not linear - both P and I factors of PID are required to get any results
|
||
* PID implementation tested on a bench only
|
||
* it is believed that more than just PID would be needed, as is this is probably
|
||
* not usable on a real vehicle. Needs to be tested :)
|
||
*
|
||
* https://raw.githubusercontent.com/wiki/rusefi/rusefi_documentation/oem_docs/VAG/Bosch_0280750009_pinout.jpg
|
||
*
|
||
* ETB is controlled according to pedal position input (pedal position sensor is a potentiometer)
|
||
* pedal 0% means pedal not pressed / idle
|
||
* pedal 100% means pedal all the way down
|
||
* (not TPS - not the one you can calibrate in TunerStudio)
|
||
*
|
||
*
|
||
* See also pid.cpp
|
||
*
|
||
* Relevant console commands:
|
||
*
|
||
* ETB_BENCH_ENGINE
|
||
* set engine_type 58
|
||
*
|
||
* enable verbose_etb
|
||
* disable verbose_etb
|
||
* ethinfo
|
||
* set mock_pedal_position X
|
||
*
|
||
*
|
||
* set debug_mode 17
|
||
* for PID outputs
|
||
*
|
||
* set etb_p X
|
||
* set etb_i X
|
||
* set etb_d X
|
||
* set etb_o X
|
||
*
|
||
* set_etb_duty X
|
||
*
|
||
* http://rusefi.com/forum/viewtopic.php?f=5&t=592
|
||
*
|
||
* @date Dec 7, 2013
|
||
* @author Andrey Belomutskiy, (c) 2012-2020
|
||
*
|
||
* This file is part of rusEfi - see http://rusefi.com
|
||
*
|
||
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
|
||
* the GNU General Public License as published by the Free Software Foundation; either
|
||
* version 3 of the License, or (at your option) any later version.
|
||
*
|
||
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
|
||
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License along with this program.
|
||
* If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include "global.h"
|
||
|
||
#if EFI_ELECTRONIC_THROTTLE_BODY
|
||
|
||
#include "electronic_throttle.h"
|
||
#include "tps.h"
|
||
#include "sensor.h"
|
||
#include "dc_motor.h"
|
||
#include "dc_motors.h"
|
||
#include "pid_auto_tune.h"
|
||
|
||
#if defined(HAS_OS_ACCESS)
|
||
#error "Unexpected OS ACCESS HERE"
|
||
#endif
|
||
|
||
#ifndef ETB_MAX_COUNT
|
||
#define ETB_MAX_COUNT 2
|
||
#endif /* ETB_MAX_COUNT */
|
||
|
||
static LoggingWithStorage logger("ETB");
|
||
static pedal2tps_t pedal2tpsMap("Pedal2Tps");
|
||
|
||
EXTERN_ENGINE;
|
||
|
||
static bool startupPositionError = false;
|
||
|
||
#define STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD 5
|
||
|
||
static SensorType functionToPositionSensor(etb_function_e func) {
|
||
switch(func) {
|
||
case ETB_Throttle1: return SensorType::Tps1;
|
||
case ETB_Throttle2: return SensorType::Tps2;
|
||
case ETB_IdleValve: return SensorType::IdlePosition;
|
||
case ETB_Wastegate: return SensorType::WastegatePosition;
|
||
default: return SensorType::Invalid;
|
||
}
|
||
}
|
||
|
||
static SensorType functionToTpsSensorPrimary(etb_function_e func) {
|
||
switch(func) {
|
||
case ETB_Throttle1: return SensorType::Tps1Primary;
|
||
default: return SensorType::Tps2Primary;
|
||
}
|
||
}
|
||
|
||
static SensorType functionToTpsSensorSecondary(etb_function_e func) {
|
||
switch(func) {
|
||
case ETB_Throttle1: return SensorType::Tps1Secondary;
|
||
default: return SensorType::Tps2Secondary;
|
||
}
|
||
}
|
||
|
||
#if EFI_TUNER_STUDIO
|
||
static TsCalMode functionToCalModePriMin(etb_function_e func) {
|
||
switch (func) {
|
||
case ETB_Throttle1: return TsCalMode::Tps1Min;
|
||
default: return TsCalMode::Tps2Min;
|
||
}
|
||
}
|
||
|
||
static TsCalMode functionToCalModePriMax(etb_function_e func) {
|
||
switch (func) {
|
||
case ETB_Throttle1: return TsCalMode::Tps1Max;
|
||
default: return TsCalMode::Tps2Max;
|
||
}
|
||
}
|
||
|
||
static TsCalMode functionToCalModeSecMin(etb_function_e func) {
|
||
switch (func) {
|
||
case ETB_Throttle1: return TsCalMode::Tps1SecondaryMin;
|
||
default: return TsCalMode::Tps2SecondaryMin;
|
||
}
|
||
}
|
||
|
||
static TsCalMode functionToCalModeSecMax(etb_function_e func) {
|
||
switch (func) {
|
||
case ETB_Throttle1: return TsCalMode::Tps1SecondaryMax;
|
||
default: return TsCalMode::Tps2SecondaryMax;
|
||
}
|
||
}
|
||
#endif // EFI_TUNER_STUDIO
|
||
|
||
static percent_t directPwmValue = NAN;
|
||
static percent_t currentEtbDuty;
|
||
|
||
#define ETB_DUTY_LIMIT 0.9
|
||
// this macro clamps both positive and negative percentages from about -100% to 100%
|
||
#define ETB_PERCENT_TO_DUTY(x) (clampF(-ETB_DUTY_LIMIT, 0.01f * (x), ETB_DUTY_LIMIT))
|
||
|
||
bool EtbController::init(etb_function_e function, DcMotor *motor, pid_s *pidParameters, const ValueProvider3D* pedalMap) {
|
||
if (function == ETB_None) {
|
||
// if not configured, don't init.
|
||
return false;
|
||
}
|
||
|
||
m_function = function;
|
||
m_positionSensor = functionToPositionSensor(function);
|
||
m_motor = motor;
|
||
m_pid.initPidClass(pidParameters);
|
||
m_pedalMap = pedalMap;
|
||
|
||
return true;
|
||
}
|
||
|
||
void EtbController::reset() {
|
||
m_shouldResetPid = true;
|
||
}
|
||
|
||
void EtbController::onConfigurationChange(pid_s* previousConfiguration) {
|
||
if (m_motor && !m_pid.isSame(previousConfiguration)) {
|
||
m_shouldResetPid = true;
|
||
}
|
||
}
|
||
|
||
void EtbController::showStatus(Logging* logger) {
|
||
m_pid.showPidStatus(logger, "ETB");
|
||
}
|
||
|
||
expected<percent_t> EtbController::observePlant() const {
|
||
return Sensor::get(m_positionSensor);
|
||
}
|
||
|
||
void EtbController::setIdlePosition(percent_t pos) {
|
||
m_idlePosition = pos;
|
||
}
|
||
|
||
expected<percent_t> EtbController::getSetpoint() const {
|
||
switch (m_function) {
|
||
case ETB_Throttle1:
|
||
case ETB_Throttle2:
|
||
return getSetpointEtb();
|
||
case ETB_IdleValve:
|
||
return getSetpointIdleValve();
|
||
case ETB_Wastegate:
|
||
return getSetpointWastegate();
|
||
default:
|
||
return unexpected;
|
||
}
|
||
}
|
||
|
||
expected<percent_t> EtbController::getSetpointIdleValve() const {
|
||
// VW ETB idle mode uses an ETB only for idle (a mini-ETB sets the lower stop, and a normal cable
|
||
// can pull the throttle up off the stop.), so we directly control the throttle with the idle position.
|
||
#if EFI_TUNER_STUDIO
|
||
tsOutputChannels.etbTarget = m_idlePosition;
|
||
#endif // EFI_TUNER_STUDIO
|
||
return clampF(0, m_idlePosition, 100);
|
||
}
|
||
|
||
expected<percent_t> EtbController::getSetpointWastegate() const {
|
||
// TODO: implement me!
|
||
return unexpected;
|
||
}
|
||
|
||
expected<percent_t> EtbController::getSetpointEtb() const {
|
||
// A few extra preconditions if throttle control is invalid
|
||
if (startupPositionError) {
|
||
return unexpected;
|
||
}
|
||
|
||
// If the pedal map hasn't been set, we can't provide a setpoint.
|
||
if (!m_pedalMap) {
|
||
return unexpected;
|
||
}
|
||
|
||
auto pedalPosition = Sensor::get(SensorType::AcceleratorPedal);
|
||
|
||
// If the pedal has failed, just use 0 position.
|
||
// This is safer than disabling throttle control - we can at least push the throttle closed
|
||
// and let the engine idle.
|
||
float sanitizedPedal = clampF(0, pedalPosition.value_or(0), 100);
|
||
|
||
float rpm = GET_RPM();
|
||
float targetFromTable = m_pedalMap->getValue(rpm / RPM_1_BYTE_PACKING_MULT, sanitizedPedal);
|
||
engine->engineState.targetFromTable = targetFromTable;
|
||
|
||
percent_t etbIdlePosition = clampF(
|
||
0,
|
||
CONFIG(useETBforIdleControl) ? m_idlePosition : 0,
|
||
100
|
||
);
|
||
percent_t etbIdleAddition = 0.01f * CONFIG(etbIdleThrottleRange) * etbIdlePosition;
|
||
|
||
// Interpolate so that the idle adder just "compresses" the throttle's range upward.
|
||
// [0, 100] -> [idle, 100]
|
||
// 0% target from table -> idle position as target
|
||
// 100% target from table -> 100% target position
|
||
percent_t targetPosition = interpolateClamped(0, etbIdleAddition, 100, 100, targetFromTable);
|
||
|
||
#if EFI_TUNER_STUDIO
|
||
if (m_function == ETB_Throttle1) {
|
||
tsOutputChannels.etbTarget = targetPosition;
|
||
}
|
||
#endif // EFI_TUNER_STUDIO
|
||
|
||
return targetPosition;
|
||
}
|
||
|
||
expected<percent_t> EtbController::getOpenLoop(percent_t target) const {
|
||
float ff = interpolate2d("etbb", target, engineConfiguration->etbBiasBins, engineConfiguration->etbBiasValues);
|
||
engine->engineState.etbFeedForward = ff;
|
||
return ff;
|
||
}
|
||
|
||
expected<percent_t> EtbController::getClosedLoopAutotune(percent_t actualThrottlePosition) {
|
||
// Estimate gain at 60% position - this should be well away from the spring and in the linear region
|
||
bool isPositive = actualThrottlePosition > 60.0f;
|
||
|
||
float autotuneAmplitude = 20;
|
||
|
||
// End of cycle - record & reset
|
||
if (!isPositive && m_lastIsPositive) {
|
||
efitick_t now = getTimeNowNt();
|
||
|
||
// Determine period
|
||
float tu = NT2US((float)(now - m_cycleStartTime)) / 1e6;
|
||
m_cycleStartTime = now;
|
||
|
||
// Determine amplitude
|
||
float a = m_maxCycleTps - m_minCycleTps;
|
||
|
||
// Filter - it's pretty noisy since the ultimate period is not very many loop periods
|
||
constexpr float alpha = 0.05;
|
||
m_a = alpha * a + (1 - alpha) * m_a;
|
||
m_tu = alpha * tu + (1 - alpha) * m_tu;
|
||
|
||
// Reset bounds
|
||
m_minCycleTps = 100;
|
||
m_maxCycleTps = 0;
|
||
|
||
// Math is for Åström–Hägglund (relay) auto tuning
|
||
// https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume5issue2/hornsey
|
||
|
||
// Publish to TS state
|
||
#if EFI_TUNER_STUDIO
|
||
// Amplitude of input (duty cycle %)
|
||
float b = 2 * autotuneAmplitude;
|
||
|
||
// Ultimate gain per A-H relay tuning rule
|
||
float ku = 4 * b / (3.14159f * m_a);
|
||
|
||
// The multipliers below are somewhere near the "no overshoot"
|
||
// and "some overshoot" flavors of the Ziegler-Nichols method
|
||
// Kp
|
||
float kp = 0.35f * ku;
|
||
float ki = 0.25f * ku / m_tu;
|
||
float kd = 0.08f * ku * m_tu;
|
||
|
||
// Every 5 cycles (of the throttle), cycle to the next value
|
||
if (m_autotuneCounter == 5) {
|
||
m_autotuneCounter = 0;
|
||
m_autotuneCurrentParam++;
|
||
|
||
if (m_autotuneCurrentParam >= 3) {
|
||
m_autotuneCurrentParam = 0;
|
||
}
|
||
}
|
||
|
||
m_autotuneCounter++;
|
||
|
||
// Multiplex 3 signals on to the {mode, value} format
|
||
tsOutputChannels.calibrationMode = static_cast<TsCalMode>(m_autotuneCurrentParam + 3);
|
||
|
||
switch (m_autotuneCurrentParam) {
|
||
case 0:
|
||
tsOutputChannels.calibrationValue = kp;
|
||
break;
|
||
case 1:
|
||
tsOutputChannels.calibrationValue = ki;
|
||
break;
|
||
case 2:
|
||
tsOutputChannels.calibrationValue = kd;
|
||
break;
|
||
}
|
||
|
||
// Also output to debug channels if configured
|
||
if (engineConfiguration->debugMode == DBG_ETB_AUTOTUNE) {
|
||
// a - amplitude of output (TPS %)
|
||
tsOutputChannels.debugFloatField1 = m_a;
|
||
// b - amplitude of input (Duty cycle %)
|
||
tsOutputChannels.debugFloatField2 = b;
|
||
// Tu - oscillation period (seconds)
|
||
tsOutputChannels.debugFloatField3 = m_tu;
|
||
|
||
tsOutputChannels.debugFloatField4 = ku;
|
||
tsOutputChannels.debugFloatField5 = kp;
|
||
tsOutputChannels.debugFloatField6 = ki;
|
||
tsOutputChannels.debugFloatField7 = kd;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
m_lastIsPositive = isPositive;
|
||
|
||
// Find the min/max of each cycle
|
||
if (actualThrottlePosition < m_minCycleTps) {
|
||
m_minCycleTps = actualThrottlePosition;
|
||
}
|
||
|
||
if (actualThrottlePosition > m_maxCycleTps) {
|
||
m_maxCycleTps = actualThrottlePosition;
|
||
}
|
||
|
||
// Bang-bang control the output to induce oscillation
|
||
return autotuneAmplitude * (isPositive ? -1 : 1);
|
||
}
|
||
|
||
expected<percent_t> EtbController::getClosedLoop(percent_t target, percent_t observation) {
|
||
if (m_shouldResetPid) {
|
||
m_pid.reset();
|
||
m_shouldResetPid = false;
|
||
}
|
||
|
||
// Only report the 0th throttle
|
||
if (m_function == ETB_Throttle1) {
|
||
#if EFI_TUNER_STUDIO
|
||
// Error is positive if the throttle needs to open further
|
||
tsOutputChannels.etb1Error = target - observation;
|
||
#endif /* EFI_TUNER_STUDIO */
|
||
}
|
||
|
||
// Only allow autotune with stopped engine, and on the first throttle
|
||
if (GET_RPM() == 0
|
||
&& engine->etbAutoTune
|
||
&& m_function == ETB_Throttle1) {
|
||
return getClosedLoopAutotune(observation);
|
||
} else {
|
||
// Normal case - use PID to compute closed loop part
|
||
return m_pid.getOutput(target, observation, 1.0f / ETB_LOOP_FREQUENCY);
|
||
}
|
||
}
|
||
|
||
void EtbController::setOutput(expected<percent_t> outputValue) {
|
||
#if EFI_TUNER_STUDIO
|
||
// Only report first-throttle stats
|
||
if (m_function == ETB_Throttle1) {
|
||
tsOutputChannels.etb1DutyCycle = outputValue.value_or(0);
|
||
}
|
||
#endif
|
||
|
||
if (!m_motor) return;
|
||
|
||
// If output is valid and we aren't paused, output to motor.
|
||
if (outputValue && !engineConfiguration->pauseEtbControl) {
|
||
m_motor->enable();
|
||
m_motor->set(ETB_PERCENT_TO_DUTY(outputValue.Value));
|
||
} else {
|
||
m_motor->disable();
|
||
}
|
||
}
|
||
|
||
void EtbController::update() {
|
||
// If we didn't get initialized, fail fast
|
||
if (!m_motor) {
|
||
return;
|
||
}
|
||
|
||
#if EFI_TUNER_STUDIO
|
||
// Only debug throttle #1
|
||
if (m_function == ETB_Throttle1) {
|
||
// set debug_mode 17
|
||
if (engineConfiguration->debugMode == DBG_ELECTRONIC_THROTTLE_PID) {
|
||
m_pid.postState(&tsOutputChannels);
|
||
tsOutputChannels.debugIntField5 = engine->engineState.etbFeedForward;
|
||
} else if (engineConfiguration->debugMode == DBG_ELECTRONIC_THROTTLE_EXTRA) {
|
||
// set debug_mode 29
|
||
tsOutputChannels.debugFloatField1 = directPwmValue;
|
||
}
|
||
}
|
||
#endif /* EFI_TUNER_STUDIO */
|
||
|
||
if (!cisnan(directPwmValue)) {
|
||
m_motor->set(directPwmValue);
|
||
return;
|
||
}
|
||
|
||
#if EFI_TUNER_STUDIO
|
||
if (engineConfiguration->debugMode == DBG_ETB_LOGIC) {
|
||
tsOutputChannels.debugFloatField1 = engine->engineState.targetFromTable;
|
||
tsOutputChannels.debugFloatField2 = engine->engineState.idle.etbIdleAddition;
|
||
}
|
||
#endif
|
||
|
||
m_pid.iTermMin = engineConfiguration->etb_iTermMin;
|
||
m_pid.iTermMax = engineConfiguration->etb_iTermMax;
|
||
|
||
if (engineConfiguration->isVerboseETB) {
|
||
m_pid.showPidStatus(&logger, "ETB");
|
||
}
|
||
|
||
ClosedLoopController::update();
|
||
|
||
DISPLAY_STATE(Engine)
|
||
DISPLAY(DISPLAY_IF(1))
|
||
DISPLAY_TEXT(Electronic_Throttle);
|
||
DISPLAY_SENSOR(TPS)
|
||
DISPLAY_TEXT(eol);
|
||
|
||
DISPLAY_TEXT(Pedal);
|
||
DISPLAY_SENSOR(PPS);
|
||
DISPLAY(DISPLAY_CONFIG(throttlePedalPositionAdcChannel));
|
||
DISPLAY_TEXT(eol);
|
||
|
||
DISPLAY_TEXT(Feed_forward);
|
||
DISPLAY(DISPLAY_FIELD(etbFeedForward));
|
||
DISPLAY_TEXT(eol);
|
||
|
||
DISPLAY_STATE(ETB_pid)
|
||
DISPLAY_TEXT(input);
|
||
DISPLAY(DISPLAY_FIELD(input));
|
||
DISPLAY_TEXT(Output);
|
||
DISPLAY(DISPLAY_FIELD(output));
|
||
DISPLAY_TEXT(iTerm);
|
||
DISPLAY(DISPLAY_FIELD(iTerm));
|
||
DISPLAY_TEXT(eol);
|
||
DISPLAY(DISPLAY_FIELD(errorAmplificationCoef));
|
||
DISPLAY(DISPLAY_FIELD(previousError));
|
||
DISPLAY_TEXT(eol);
|
||
|
||
DISPLAY_TEXT(Settings);
|
||
DISPLAY(DISPLAY_CONFIG(ETB_PFACTOR));
|
||
DISPLAY(DISPLAY_CONFIG(ETB_IFACTOR));
|
||
DISPLAY(DISPLAY_CONFIG(ETB_DFACTOR));
|
||
DISPLAY_TEXT(eol);
|
||
DISPLAY(DISPLAY_CONFIG(ETB_OFFSET));
|
||
DISPLAY(DISPLAY_CONFIG(ETB_PERIODMS));
|
||
DISPLAY_TEXT(eol);
|
||
DISPLAY(DISPLAY_CONFIG(ETB_MINVALUE));
|
||
DISPLAY(DISPLAY_CONFIG(ETB_MAXVALUE));
|
||
/* DISPLAY_ELSE */
|
||
DISPLAY_TEXT(No_Pedal_Sensor);
|
||
/* DISPLAY_ENDIF */
|
||
}
|
||
|
||
void EtbController::autoCalibrateTps() {
|
||
// Only auto calibrate throttles
|
||
if (m_function == ETB_Throttle1 || m_function == ETB_Throttle2) {
|
||
m_isAutocal = true;
|
||
}
|
||
}
|
||
|
||
#if !EFI_UNIT_TEST
|
||
/**
|
||
* Things running on a timer (instead of a thread) don't participate it the RTOS's thread priority system,
|
||
* and operate essentially "first come first serve", which risks starvation.
|
||
* Since ETB is a safety critical device, we need the hard RTOS guarantee that it will be scheduled over other less important tasks.
|
||
*/
|
||
#include "periodic_thread_controller.h"
|
||
struct EtbImpl final : public EtbController {
|
||
void update() override {
|
||
#if EFI_TUNER_STUDIO
|
||
if (m_isAutocal) {
|
||
// Don't allow if engine is running!
|
||
if (GET_RPM() > 0) {
|
||
m_isAutocal = false;
|
||
return;
|
||
}
|
||
|
||
auto motor = getMotor();
|
||
if (!motor) {
|
||
m_isAutocal = false;
|
||
return;
|
||
}
|
||
|
||
auto myFunction = getFunction();
|
||
|
||
// First grab open
|
||
motor->set(0.5f);
|
||
motor->enable();
|
||
chThdSleepMilliseconds(1000);
|
||
float primaryMax = Sensor::getRaw(functionToTpsSensorPrimary(myFunction)) * TPS_TS_CONVERSION;
|
||
float secondaryMax = Sensor::getRaw(functionToTpsSensorSecondary(myFunction)) * TPS_TS_CONVERSION;
|
||
|
||
// Let it return
|
||
motor->set(0);
|
||
chThdSleepMilliseconds(200);
|
||
|
||
// Now grab closed
|
||
motor->set(-0.5f);
|
||
chThdSleepMilliseconds(1000);
|
||
float primaryMin = Sensor::getRaw(functionToTpsSensorPrimary(myFunction)) * TPS_TS_CONVERSION;
|
||
float secondaryMin = Sensor::getRaw(functionToTpsSensorSecondary(myFunction)) * TPS_TS_CONVERSION;
|
||
|
||
// Finally disable and reset state
|
||
motor->disable();
|
||
|
||
// Write out the learned values to TS, waiting briefly after setting each to let TS grab it
|
||
tsOutputChannels.calibrationMode = functionToCalModePriMax(myFunction);
|
||
tsOutputChannels.calibrationValue = primaryMax;
|
||
chThdSleepMilliseconds(500);
|
||
tsOutputChannels.calibrationMode = functionToCalModePriMin(myFunction);
|
||
tsOutputChannels.calibrationValue = primaryMin;
|
||
chThdSleepMilliseconds(500);
|
||
|
||
tsOutputChannels.calibrationMode = functionToCalModeSecMax(myFunction);
|
||
tsOutputChannels.calibrationValue = secondaryMax;
|
||
chThdSleepMilliseconds(500);
|
||
tsOutputChannels.calibrationMode = functionToCalModeSecMin(myFunction);
|
||
tsOutputChannels.calibrationValue = secondaryMin;
|
||
chThdSleepMilliseconds(500);
|
||
|
||
tsOutputChannels.calibrationMode = TsCalMode::None;
|
||
|
||
m_isAutocal = false;
|
||
return;
|
||
}
|
||
#endif /* EFI_TUNER_STUDIO */
|
||
|
||
EtbController::update();
|
||
}
|
||
};
|
||
|
||
// real implementation (we mock for some unit tests)
|
||
static EtbImpl etbControllers[ETB_COUNT];
|
||
|
||
struct EtbThread final : public PeriodicController<512> {
|
||
EtbThread() : PeriodicController("ETB", NORMALPRIO + 3, ETB_LOOP_FREQUENCY) {}
|
||
|
||
void PeriodicTask(efitick_t) override {
|
||
// Simply update all controllers
|
||
for (int i = 0 ; i < engine->etbActualCount; i++) {
|
||
etbControllers[i].update();
|
||
}
|
||
}
|
||
};
|
||
|
||
static EtbThread etbThread;
|
||
|
||
#endif
|
||
|
||
static void showEthInfo(void) {
|
||
#if EFI_PROD_CODE
|
||
if (engine->etbActualCount == 0) {
|
||
scheduleMsg(&logger, "ETB DISABLED since no PPS");
|
||
}
|
||
|
||
scheduleMsg(&logger, "etbAutoTune=%d",
|
||
engine->etbAutoTune);
|
||
|
||
scheduleMsg(&logger, "TPS=%.2f", Sensor::get(SensorType::Tps1).value_or(0));
|
||
|
||
|
||
scheduleMsg(&logger, "etbControlPin1=%s duty=%.2f freq=%d",
|
||
hwPortname(CONFIG(etbIo[0].controlPin1)),
|
||
currentEtbDuty,
|
||
engineConfiguration->etbFreq);
|
||
int i;
|
||
for (i = 0; i < engine->etbActualCount; i++) {
|
||
scheduleMsg(&logger, "ETB%d", i);
|
||
scheduleMsg(&logger, " dir1=%s", hwPortname(CONFIG(etbIo[i].directionPin1)));
|
||
scheduleMsg(&logger, " dir2=%s", hwPortname(CONFIG(etbIo[i].directionPin2)));
|
||
scheduleMsg(&logger, " control=%s", hwPortname(CONFIG(etbIo[i].controlPin1)));
|
||
scheduleMsg(&logger, " disable=%s", hwPortname(CONFIG(etbIo[i].disablePin)));
|
||
showDcMotorInfo(&logger, i);
|
||
}
|
||
|
||
#endif /* EFI_PROD_CODE */
|
||
}
|
||
|
||
static void etbPidReset(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
||
for (int i = 0 ; i < engine->etbActualCount; i++) {
|
||
engine->etbControllers[i]->reset();
|
||
}
|
||
}
|
||
|
||
#if !EFI_UNIT_TEST
|
||
|
||
/**
|
||
* At the moment there are TWO ways to use this
|
||
* set_etb_duty X
|
||
* set etb X
|
||
* manual duty cycle control without PID. Percent value from 0 to 100
|
||
*/
|
||
void setThrottleDutyCycle(percent_t level) {
|
||
scheduleMsg(&logger, "setting ETB duty=%f%%", level);
|
||
if (cisnan(level)) {
|
||
directPwmValue = NAN;
|
||
return;
|
||
}
|
||
|
||
float dc = ETB_PERCENT_TO_DUTY(level);
|
||
directPwmValue = dc;
|
||
for (int i = 0 ; i < engine->etbActualCount; i++) {
|
||
setDcMotorDuty(i, dc);
|
||
}
|
||
scheduleMsg(&logger, "duty ETB duty=%f", dc);
|
||
}
|
||
|
||
static void setEtbFrequency(int frequency) {
|
||
engineConfiguration->etbFreq = frequency;
|
||
|
||
for (int i = 0 ; i < engine->etbActualCount; i++) {
|
||
setDcMotorFrequency(i, frequency);
|
||
}
|
||
}
|
||
|
||
static void etbReset() {
|
||
scheduleMsg(&logger, "etbReset");
|
||
|
||
for (int i = 0 ; i < engine->etbActualCount; i++) {
|
||
setDcMotorDuty(i, 0);
|
||
}
|
||
|
||
etbPidReset();
|
||
}
|
||
#endif /* EFI_PROD_CODE */
|
||
|
||
#if !EFI_UNIT_TEST
|
||
/**
|
||
* set etb_p X
|
||
*/
|
||
void setEtbPFactor(float value) {
|
||
engineConfiguration->etb.pFactor = value;
|
||
etbPidReset();
|
||
showEthInfo();
|
||
}
|
||
|
||
/**
|
||
* set etb_i X
|
||
*/
|
||
void setEtbIFactor(float value) {
|
||
engineConfiguration->etb.iFactor = value;
|
||
etbPidReset();
|
||
showEthInfo();
|
||
}
|
||
|
||
/**
|
||
* set etb_d X
|
||
*/
|
||
void setEtbDFactor(float value) {
|
||
engineConfiguration->etb.dFactor = value;
|
||
etbPidReset();
|
||
showEthInfo();
|
||
}
|
||
|
||
/**
|
||
* set etb_o X
|
||
*/
|
||
void setEtbOffset(int value) {
|
||
engineConfiguration->etb.offset = value;
|
||
etbPidReset();
|
||
showEthInfo();
|
||
}
|
||
|
||
void etbAutocal(size_t throttleIndex) {
|
||
if (throttleIndex >= ETB_COUNT) {
|
||
return;
|
||
}
|
||
|
||
auto etb = engine->etbControllers[throttleIndex];
|
||
|
||
if (etb) {
|
||
etb->autoCalibrateTps();
|
||
}
|
||
}
|
||
|
||
#endif /* !EFI_UNIT_TEST */
|
||
|
||
/**
|
||
* This specific throttle has default position of about 7% open
|
||
*/
|
||
static const float boschBiasBins[] = {
|
||
0, 1, 5, 7, 14, 65, 66, 100
|
||
};
|
||
static const float boschBiasValues[] = {
|
||
-15, -15, -10, 0, 19, 20, 26, 28
|
||
};
|
||
|
||
void setBoschVNH2SP30Curve(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
|
||
copyArray(CONFIG(etbBiasBins), boschBiasBins);
|
||
copyArray(CONFIG(etbBiasValues), boschBiasValues);
|
||
}
|
||
|
||
void setDefaultEtbParameters(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
|
||
CONFIG(etbIdleThrottleRange) = 5;
|
||
|
||
setLinearCurve(config->pedalToTpsPedalBins, /*from*/0, /*to*/100, 1);
|
||
setLinearCurve(config->pedalToTpsRpmBins, /*from*/0, /*to*/8000 / RPM_1_BYTE_PACKING_MULT, 1);
|
||
|
||
for (int pedalIndex = 0;pedalIndex<PEDAL_TO_TPS_SIZE;pedalIndex++) {
|
||
for (int rpmIndex = 0;rpmIndex<PEDAL_TO_TPS_SIZE;rpmIndex++) {
|
||
config->pedalToTpsTable[pedalIndex][rpmIndex] = config->pedalToTpsPedalBins[pedalIndex];
|
||
}
|
||
}
|
||
|
||
engineConfiguration->etbFreq = DEFAULT_ETB_PWM_FREQUENCY;
|
||
|
||
// voltage, not ADC like with TPS
|
||
engineConfiguration->throttlePedalUpVoltage = 0;
|
||
engineConfiguration->throttlePedalWOTVoltage = 5;
|
||
|
||
engineConfiguration->etb = {
|
||
1, // Kp
|
||
10, // Ki
|
||
0.05, // Kd
|
||
0, // offset
|
||
0, // Update rate, unused
|
||
-100, 100 // min/max
|
||
};
|
||
|
||
engineConfiguration->etb_iTermMin = -30;
|
||
engineConfiguration->etb_iTermMax = 30;
|
||
}
|
||
|
||
void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration) {
|
||
#if !EFI_UNIT_TEST
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
etbControllers[i].onConfigurationChange(&previousConfiguration->etb);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
#if EFI_PROD_CODE && 0
|
||
static void setTempOutput(float value) {
|
||
autoTune.output = value;
|
||
}
|
||
|
||
/**
|
||
* set_etbat_step X
|
||
*/
|
||
static void setAutoStep(float value) {
|
||
autoTune.reset();
|
||
autoTune.SetOutputStep(value);
|
||
}
|
||
|
||
#endif /* EFI_PROD_CODE */
|
||
|
||
static const float defaultBiasBins[] = {
|
||
0, 1, 2, 4, 7, 98, 99, 100
|
||
};
|
||
static const float defaultBiasValues[] = {
|
||
-20, -18, -17, 0, 20, 21, 22, 25
|
||
};
|
||
|
||
void setDefaultEtbBiasCurve(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
|
||
copyArray(CONFIG(etbBiasBins), defaultBiasBins);
|
||
copyArray(CONFIG(etbBiasValues), defaultBiasValues);
|
||
}
|
||
|
||
void unregisterEtbPins() {
|
||
// todo: we probably need an implementation here?!
|
||
}
|
||
|
||
void doInitElectronicThrottle(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
||
efiAssertVoid(OBD_PCM_Processor_Fault, engine->etbControllers != NULL, "etbControllers NULL");
|
||
#if EFI_PROD_CODE
|
||
addConsoleAction("ethinfo", showEthInfo);
|
||
addConsoleAction("etbreset", etbReset);
|
||
addConsoleActionI("etb_freq", setEtbFrequency);
|
||
#endif /* EFI_PROD_CODE */
|
||
|
||
// If you don't have a pedal we have no business here.
|
||
if (!Sensor::hasSensor(SensorType::AcceleratorPedalPrimary)) {
|
||
return;
|
||
}
|
||
|
||
pedal2tpsMap.init(config->pedalToTpsTable, config->pedalToTpsPedalBins, config->pedalToTpsRpmBins);
|
||
|
||
engine->etbActualCount = Sensor::hasSensor(SensorType::Tps2) ? 2 : 1;
|
||
|
||
for (int i = 0 ; i < engine->etbActualCount; i++) {
|
||
auto motor = initDcMotor(i, CONFIG(etb_use_two_wires) PASS_ENGINE_PARAMETER_SUFFIX);
|
||
|
||
// If this motor is actually set up, init the etb
|
||
if (motor)
|
||
{
|
||
// TODO: configure per-motor in config so wastegate/VW idle works
|
||
auto func = i == 0 ? ETB_Throttle1 : ETB_Throttle2;
|
||
|
||
engine->etbControllers[i]->init(func, motor, &engineConfiguration->etb, &pedal2tpsMap);
|
||
INJECT_ENGINE_REFERENCE(engine->etbControllers[i]);
|
||
}
|
||
}
|
||
|
||
#if 0 && ! EFI_UNIT_TEST
|
||
percent_t startupThrottlePosition = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE);
|
||
if (absF(startupThrottlePosition - engineConfiguration->etbNeutralPosition) > STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD) {
|
||
/**
|
||
* Unexpected electronic throttle start-up position is worth a critical error
|
||
*/
|
||
firmwareError(OBD_Throttle_Actuator_Control_Range_Performance_Bank_1, "startup ETB position %.2f not %d",
|
||
startupThrottlePosition,
|
||
engineConfiguration->etbNeutralPosition);
|
||
startupPositionError = true;
|
||
}
|
||
#endif /* EFI_UNIT_TEST */
|
||
|
||
etbPidReset(PASS_ENGINE_PARAMETER_SIGNATURE);
|
||
|
||
#if !EFI_UNIT_TEST
|
||
etbThread.Start();
|
||
#endif
|
||
}
|
||
|
||
void initElectronicThrottle(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
||
if (hasFirmwareError()) {
|
||
return;
|
||
}
|
||
|
||
#if !EFI_UNIT_TEST
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
engine->etbControllers[i] = &etbControllers[i];
|
||
}
|
||
#endif
|
||
|
||
doInitElectronicThrottle(PASS_ENGINE_PARAMETER_SIGNATURE);
|
||
}
|
||
|
||
void setEtbIdlePosition(percent_t pos DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
auto etb = engine->etbControllers[i];
|
||
|
||
if (etb) {
|
||
etb->setIdlePosition(pos);
|
||
}
|
||
}
|
||
}
|
||
|
||
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
|