rusefi/firmware/controllers/algo/advance_map.cpp

297 lines
9.8 KiB
C++

/**
* @file advance_map.cpp
*
* @date Mar 27, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "pch.h"
#include "advance_map.h"
#include "idle_thread.h"
#include "launch_control.h"
#if EFI_ENGINE_CONTROL
static ign_Map3D_t advanceMap;
static ign_Map3D_t iatAdvanceCorrectionMap;
// todo: reset this between cranking attempts?! #2735
int minCrankingRpm = 0;
/**
* @return ignition timing angle advance before TDC
*/
static angle_t getRunningAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (CONFIG(timingMode) == TM_FIXED) {
return engineConfiguration->fixedTiming;
}
if (cisnan(engineLoad)) {
warning(CUSTOM_NAN_ENGINE_LOAD, "NaN engine load");
return NAN;
}
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(engineLoad), "invalid el", NAN);
float advanceAngle = advanceMap.getValue((float) rpm, engineLoad);
// get advance from the separate table for Idle
if (CONFIG(useSeparateAdvanceForIdle) && isIdling()) {
float idleAdvance = interpolate2d(rpm, config->idleAdvanceBins, config->idleAdvance);
auto [valid, tps] = Sensor::get(SensorType::DriverThrottleIntent);
if (valid) {
// interpolate between idle table and normal (running) table using TPS threshold
advanceAngle = interpolateClamped(0.0f, idleAdvance, CONFIG(idlePidDeactivationTpsThreshold), advanceAngle, tps);
}
}
#if EFI_LAUNCH_CONTROL
if (engine->isLaunchCondition && CONFIG(enableLaunchRetard)) {
if (CONFIG(launchSmoothRetard)) {
float launchAngle = CONFIG(launchTimingRetard);
int launchAdvanceRpmRange = CONFIG(launchTimingRpmRange);
int launchRpm = CONFIG(launchRpm);
// interpolate timing from rpm at launch triggered to full retard at launch launchRpm + launchTimingRpmRange
return interpolateClamped(launchRpm, advanceAngle, (launchRpm + launchAdvanceRpmRange), launchAngle, rpm);
} else {
return engineConfiguration->launchTimingRetard;
}
}
#endif /* EFI_LAUNCH_CONTROL */
return advanceAngle;
}
angle_t getAdvanceCorrections(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
float iatCorrection;
const auto [iatValid, iat] = Sensor::get(SensorType::Iat);
if (!iatValid) {
iatCorrection = 0;
} else {
iatCorrection = iatAdvanceCorrectionMap.getValue(rpm, iat);
}
float pidTimingCorrection = getIdleTimingAdjustment(rpm);
if (engineConfiguration->debugMode == DBG_IGNITION_TIMING) {
#if EFI_TUNER_STUDIO
tsOutputChannels.debugFloatField1 = iatCorrection;
tsOutputChannels.debugFloatField2 = engine->engineState.cltTimingCorrection;
tsOutputChannels.debugFloatField3 = engine->fsioState.fsioTimingAdjustment;
tsOutputChannels.debugFloatField4 = pidTimingCorrection;
tsOutputChannels.debugIntField1 = engine->engineState.multispark.count;
#endif /* EFI_TUNER_STUDIO */
}
return iatCorrection
+ engine->fsioState.fsioTimingAdjustment
+ engine->engineState.cltTimingCorrection
+ pidTimingCorrection
// todo: uncomment once we get usable knock - engine->knockCount
;
}
/**
* @return ignition timing angle advance before TDC for Cranking
*/
static angle_t getCrankingAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) {
// get advance from the separate table for Cranking
if (CONFIG(useSeparateAdvanceForCranking)) {
return interpolate2d(rpm, CONFIG(crankingAdvanceBins), CONFIG(crankingAdvance));
}
// Interpolate the cranking timing angle to the earlier running angle for faster engine start
angle_t crankingToRunningTransitionAngle = getRunningAdvance(CONFIG(cranking.rpm), engineLoad PASS_ENGINE_PARAMETER_SUFFIX);
// interpolate not from zero, but starting from min. possible rpm detected
if (rpm < minCrankingRpm || minCrankingRpm == 0)
minCrankingRpm = rpm;
return interpolateClamped(minCrankingRpm, CONFIG(crankingTimingAngle), CONFIG(cranking.rpm), crankingToRunningTransitionAngle, rpm);
}
angle_t getAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
if (cisnan(engineLoad)) {
return 0; // any error should already be reported
}
angle_t angle;
bool isCranking = ENGINE(rpmCalculator).isCranking();
if (isCranking) {
angle = getCrankingAdvance(rpm, engineLoad PASS_ENGINE_PARAMETER_SUFFIX);
assertAngleRange(angle, "crAngle", CUSTOM_ERR_6680);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "cr_AngleN", 0);
} else {
angle = getRunningAdvance(rpm, engineLoad PASS_ENGINE_PARAMETER_SUFFIX);
if (cisnan(angle)) {
warning(CUSTOM_ERR_6610, "NaN angle from table");
return 0;
}
}
// Allow correction only if set to dynamic
// AND we're either not cranking OR allowed to correct in cranking
bool allowCorrections = CONFIG(timingMode) == TM_DYNAMIC
&& (!isCranking || CONFIG(useAdvanceCorrectionsForCranking));
if (allowCorrections) {
angle_t correction = getAdvanceCorrections(rpm PASS_ENGINE_PARAMETER_SUFFIX);
if (!cisnan(correction)) { // correction could be NaN during settings update
angle += correction;
}
}
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "_AngleN5", 0);
fixAngle(angle, "getAdvance", CUSTOM_ERR_ADCANCE_CALC_ANGLE);
return angle;
#else
return 0;
#endif
}
size_t getMultiSparkCount(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
// Compute multispark (if enabled)
if (CONFIG(multisparkEnable)
&& rpm <= CONFIG(multisparkMaxRpm)
&& CONFIG(multisparkMaxExtraSparkCount) > 0) {
// For zero RPM, disable multispark. We don't yet know the engine speed, so multispark may not be safe.
if (rpm == 0) {
return 0;
}
floatus_t multiDelay = CONFIG(multisparkSparkDuration);
floatus_t multiDwell = CONFIG(multisparkDwell);
// dwell times are below 10 seconds here so we use 32 bit type for performance reasons
ENGINE(engineState.multispark.delay) = (uint32_t)USF2NT(multiDelay);
ENGINE(engineState.multispark.dwell) = (uint32_t)USF2NT(multiDwell);
constexpr float usPerDegreeAt1Rpm = 60e6 / 360;
floatus_t usPerDegree = usPerDegreeAt1Rpm / rpm;
// How long is there for sparks? The user configured an angle, convert to time.
floatus_t additionalSparksUs = usPerDegree * CONFIG(multisparkMaxSparkingAngle);
// How long does one spark take?
floatus_t oneSparkTime = multiDelay + multiDwell;
// How many sparks can we fit in the alloted time?
float sparksFitInTime = additionalSparksUs / oneSparkTime;
// Take the floor (convert to uint8_t) - we want to undershoot, not overshoot
uint32_t floored = sparksFitInTime;
// Allow no more than the maximum number of extra sparks
return minI(floored, CONFIG(multisparkMaxExtraSparkCount));
} else {
return 0;
}
}
void initTimingMap(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
// We init both tables in RAM because here we're at a very early stage, with no config settings loaded.
advanceMap.init(config->ignitionTable, config->ignitionLoadBins,
config->ignitionRpmBins);
iatAdvanceCorrectionMap.init(config->ignitionIatCorrTable, config->ignitionIatCorrLoadBins,
config->ignitionIatCorrRpmBins);
}
/**
* @param octane gas octane number
* @param bore in mm
*/
float getTopAdvanceForBore(chamber_style_e style, int octane, double compression, double bore) {
int octaneCorrection;
if ( octane <= 90) {
octaneCorrection = -2;
} else if (octane < 94) {
octaneCorrection = -1;
} else {
octaneCorrection = 0;
}
int compressionCorrection;
if (compression <= 9) {
compressionCorrection = 2;
} else if (compression <= 10) {
compressionCorrection = 1;
} else if (compression <= 11) {
compressionCorrection = 0;
} else {
// compression ratio above 11
compressionCorrection = -2;
}
int base;
if (style == CS_OPEN) {
base = 33;
} else if (style == CS_CLOSED) {
base = 28;
} else {
// CS_SWIRL_TUMBLE
base = 22;
}
float boreCorrection = (bore - 4 * 25.4) / 25.4 * 6;
float result = base + octaneCorrection + compressionCorrection + boreCorrection;
return ((int)(result * 10)) / 10.0;
}
float getAdvanceForRpm(int rpm, float advanceMax) {
if (rpm >= 3000)
return advanceMax;
if (rpm < 600)
return 10;
return interpolateMsg("advance", 600, 10, 3000, advanceMax, rpm);
}
#define round10(x) efiRound(x, 0.1)
float getInitialAdvance(int rpm, float map, float advanceMax) {
map = minF(map, 100);
float advance = getAdvanceForRpm(rpm, advanceMax);
if (rpm >= 3000)
return round10(advance + 0.1 * (100 - map));
return round10(advance + 0.1 * (100 - map) * rpm / 3000);
}
/**
* this method builds a good-enough base timing advance map bases on a number of heuristics
*/
void buildTimingMap(float advanceMax DECLARE_CONFIG_PARAMETER_SUFFIX) {
if (engineConfiguration->fuelAlgorithm != LM_SPEED_DENSITY) {
warning(CUSTOM_WRONG_ALGORITHM, "wrong algorithm for MAP-based timing");
return;
}
/**
* good enough (but do not trust us!) default timing map in case of MAP-based engine load
*/
for (int loadIndex = 0; loadIndex < IGN_LOAD_COUNT; loadIndex++) {
float load = config->ignitionLoadBins[loadIndex];
for (int rpmIndex = 0;rpmIndex<IGN_RPM_COUNT;rpmIndex++) {
float rpm = config->ignitionRpmBins[rpmIndex];
config->ignitionTable[loadIndex][rpmIndex] = getInitialAdvance(rpm, load, advanceMax);
}
}
}
#endif // EFI_ENGINE_CONTROL