202 lines
4.9 KiB
C++
202 lines
4.9 KiB
C++
/*
|
|
* @file vvt.cpp
|
|
*
|
|
* @date Jun 26, 2016
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*/
|
|
|
|
#include "pch.h"
|
|
|
|
#include "local_version_holder.h"
|
|
#include "vvt.h"
|
|
#include "bench_test.h"
|
|
|
|
#define NO_PIN_PERIOD 500
|
|
|
|
using vvt_map_t = Map3D<SCRIPT_TABLE_8, SCRIPT_TABLE_8, int8_t, uint16_t, uint16_t>;
|
|
|
|
static vvt_map_t vvtTable1;
|
|
static vvt_map_t vvtTable2;
|
|
|
|
VvtController::VvtController(int p_index)
|
|
: index(p_index)
|
|
, m_bank(BANK_BY_INDEX(p_index))
|
|
, m_cam(CAM_BY_INDEX(p_index))
|
|
{
|
|
}
|
|
|
|
void VvtController::init(const ValueProvider3D* targetMap, IPwm* pwm) {
|
|
// Use the same settings for the Nth cam in every bank (ie, all exhaust cams use the same PID)
|
|
m_pid.initPidClass(&engineConfiguration->auxPid[m_cam]);
|
|
|
|
m_targetMap = targetMap;
|
|
m_pwm = pwm;
|
|
}
|
|
|
|
void VvtController::onFastCallback() {
|
|
if (!m_pwm || !m_targetMap) {
|
|
// not init yet
|
|
return;
|
|
}
|
|
|
|
update();
|
|
}
|
|
|
|
void VvtController::onConfigurationChange(engine_configuration_s const * previousConfig) {
|
|
if (!m_pid.isSame(&previousConfig->auxPid[m_cam])) {
|
|
m_pid.reset();
|
|
}
|
|
}
|
|
|
|
expected<angle_t> VvtController::observePlant() {
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
return engine->triggerCentral.getVVTPosition(m_bank, m_cam);
|
|
#else
|
|
return unexpected;
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
}
|
|
|
|
expected<angle_t> VvtController::getSetpoint() {
|
|
int rpm = Sensor::getOrZero(SensorType::Rpm);
|
|
bool enabled = rpm > engineConfiguration->vvtControlMinRpm
|
|
&& engine->rpmCalculator.getSecondsSinceEngineStart(getTimeNowNt()) > engineConfiguration->vvtActivationDelayMs / MS_PER_SECOND
|
|
;
|
|
if (!enabled) {
|
|
return unexpected;
|
|
}
|
|
|
|
float load = getFuelingLoad();
|
|
float target = m_targetMap->getValue(rpm, load);
|
|
|
|
#if EFI_TUNER_STUDIO
|
|
engine->outputChannels.vvtTargets[index] = target;
|
|
#endif
|
|
|
|
vvtTarget = target;
|
|
|
|
return target;
|
|
}
|
|
|
|
expected<percent_t> VvtController::getOpenLoop(angle_t target) {
|
|
// TODO: could we do VVT open loop?
|
|
UNUSED(target);
|
|
return 0;
|
|
}
|
|
|
|
static bool shouldInvertVvt(int camIndex) {
|
|
// grumble grumble, can't do an array of bits in c++
|
|
switch (camIndex) {
|
|
case 0: return engineConfiguration->invertVvtControlIntake;
|
|
case 1: return engineConfiguration->invertVvtControlExhaust;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
expected<percent_t> VvtController::getClosedLoop(angle_t target, angle_t observation) {
|
|
// User labels say "advance" and "retard"
|
|
// "advance" means that additional solenoid duty makes indicated VVT position more positive
|
|
// "retard" means that additional solenoid duty makes indicated VVT position more negative
|
|
bool isInverted = shouldInvertVvt(m_cam);
|
|
m_pid.setErrorAmplification(isInverted ? -1.0f : 1.0f);
|
|
|
|
float retVal = m_pid.getOutput(target, observation);
|
|
|
|
#if EFI_TUNER_STUDIO
|
|
m_pid.postState(engine->outputChannels.vvtStatus[index]);
|
|
#endif /* EFI_TUNER_STUDIO */
|
|
|
|
return retVal;
|
|
}
|
|
|
|
void VvtController::setOutput(expected<percent_t> outputValue) {
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
vvtOutput = outputValue.value_or(0);
|
|
|
|
if (outputValue) {
|
|
m_pwm->setSimplePwmDutyCycle(PERCENT_TO_DUTY(outputValue.Value));
|
|
} else {
|
|
m_pwm->setSimplePwmDutyCycle(0);
|
|
|
|
// we need to avoid accumulating iTerm while engine is not running
|
|
m_pid.reset();
|
|
}
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
}
|
|
|
|
#if EFI_VVT_PID
|
|
|
|
static const char *vvtOutputNames[CAM_INPUTS_COUNT] = {
|
|
"Vvt Output#1",
|
|
#if CAM_INPUTS_COUNT > 1
|
|
"Vvt Output#2",
|
|
#endif
|
|
#if CAM_INPUTS_COUNT > 2
|
|
"Vvt Output#3",
|
|
#endif
|
|
#if CAM_INPUTS_COUNT > 3
|
|
"Vvt Output#4",
|
|
#endif
|
|
};
|
|
|
|
static OutputPin vvtPins[CAM_INPUTS_COUNT];
|
|
static SimplePwm vvtPwms[CAM_INPUTS_COUNT];
|
|
|
|
OutputPin* getVvtOutputPin(int index) {
|
|
return &vvtPins[index];
|
|
}
|
|
|
|
static void applyVvtPinState(int stateIndex, PwmConfig *state) /* pwm_gen_callback */ {
|
|
OutputPin *output = state->outputPins[0];
|
|
if (output == getOutputOnTheBenchTest()) {
|
|
return;
|
|
}
|
|
state->applyPwmValue(output, stateIndex);
|
|
}
|
|
|
|
static void turnVvtPidOn(int index) {
|
|
if (!isBrainPinValid(engineConfiguration->vvtPins[index])) {
|
|
return;
|
|
}
|
|
|
|
startSimplePwmExt(&vvtPwms[index], vvtOutputNames[index],
|
|
&engine->executor,
|
|
engineConfiguration->vvtPins[index],
|
|
getVvtOutputPin(index),
|
|
engineConfiguration->vvtOutputFrequency, 0.1,
|
|
applyVvtPinState);
|
|
}
|
|
|
|
void startVvtControlPins() {
|
|
for (int i = 0;i <CAM_INPUTS_COUNT;i++) {
|
|
turnVvtPidOn(i);
|
|
}
|
|
}
|
|
|
|
void stopVvtControlPins() {
|
|
for (int i = 0;i < CAM_INPUTS_COUNT;i++) {
|
|
getVvtOutputPin(i)->deInit();
|
|
}
|
|
}
|
|
|
|
void initVvtActuators() {
|
|
if (engineConfiguration->vvtControlMinRpm < engineConfiguration->cranking.rpm) {
|
|
engineConfiguration->vvtControlMinRpm = engineConfiguration->cranking.rpm;
|
|
}
|
|
|
|
vvtTable1.init(config->vvtTable1, config->vvtTable1LoadBins,
|
|
config->vvtTable1RpmBins);
|
|
vvtTable2.init(config->vvtTable2, config->vvtTable2LoadBins,
|
|
config->vvtTable2RpmBins);
|
|
|
|
|
|
engine->module<VvtController1>()->init(&vvtTable1, &vvtPwms[0]);
|
|
engine->module<VvtController2>()->init(&vvtTable2, &vvtPwms[1]);
|
|
engine->module<VvtController3>()->init(&vvtTable1, &vvtPwms[2]);
|
|
engine->module<VvtController4>()->init(&vvtTable2, &vvtPwms[3]);
|
|
|
|
startVvtControlPins();
|
|
}
|
|
|
|
#endif
|