rusefi/firmware/hw_layer/adc/adc_inputs.cpp

502 lines
14 KiB
C++

/**
* @file adc_inputs.cpp
* @brief Low level ADC code
*
* rusEfi uses two ADC devices on the same 16 pins at the moment. Two ADC devices are used in orde to distinguish between
* fast and slow devices. The idea is that but only having few channels in 'fast' mode we can sample those faster?
*
* At the moment rusEfi does not allow to have more than 16 ADC channels combined. At the moment there is no flexibility to use
* any ADC pins, only the hardcoded choice of 16 pins.
*
* Slow ADC group is used for IAT, CLT, AFR, VBATT etc - this one is currently sampled at 500Hz
*
* Fast ADC group is used for MAP, MAF HIP - this one is currently sampled at 10KHz
* We need frequent MAP for map_averaging.cpp
*
* 10KHz equals one measurement every 3.6 degrees at 6000 RPM
*
* @date Jan 14, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#if HAL_USE_ADC
#include "os_access.h"
#include "adc_subscription.h"
#include "AdcConfiguration.h"
#include "mpu_util.h"
#include "periodic_thread_controller.h"
/* Depth of the conversion buffer, channels are sampled X times each.*/
#ifndef ADC_BUF_DEPTH_FAST
#define ADC_BUF_DEPTH_FAST 4
#endif
static NO_CACHE adcsample_t slowAdcSamples[ADC_MAX_CHANNELS_COUNT];
static NO_CACHE adcsample_t fastAdcSampleBuf[ADC_BUF_DEPTH_FAST * ADC_MAX_CHANNELS_COUNT];
static adc_channel_mode_e adcHwChannelEnabled[HW_MAX_ADC_INDEX];
// Board voltage, with divider coefficient accounted for
float getVoltageDivided(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) {
return getVoltage(msg, hwChannel PASS_ENGINE_PARAMETER_SUFFIX) * engineConfiguration->analogInputDividerCoefficient;
}
// voltage in MCU universe, from zero to VDD
float getVoltage(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) {
return adcToVolts(getAdcValue(msg, hwChannel));
}
#if EFI_USE_FAST_ADC
AdcDevice::AdcDevice(ADCConversionGroup* hwConfig, adcsample_t *buf, size_t buf_len) {
this->hwConfig = hwConfig;
this->samples = buf;
this->buf_len = buf_len;
hwConfig->sqr1 = 0;
hwConfig->sqr2 = 0;
hwConfig->sqr3 = 0;
#if ADC_MAX_CHANNELS_COUNT > 16
hwConfig->sqr4 = 0;
hwConfig->sqr5 = 0;
#endif /* ADC_MAX_CHANNELS_COUNT */
memset(hardwareIndexByIndernalAdcIndex, EFI_ADC_NONE, sizeof(hardwareIndexByIndernalAdcIndex));
memset(internalAdcIndexByHardwareIndex, 0xFF, sizeof(internalAdcIndexByHardwareIndex));
}
#if !defined(GPT_FREQ_FAST) || !defined(GPT_PERIOD_FAST)
/**
* 8000 RPM is 133Hz
* If we want to sample MAP once per 5 degrees we need 133Hz * (360 / 5) = 9576Hz of fast ADC
*/
// todo: migrate to continuous ADC mode? probably not - we cannot afford the callback in
// todo: continuous mode. todo: look into our options
#define GPT_FREQ_FAST 100000 /* PWM clock frequency. I wonder what does this setting mean? */
#define GPT_PERIOD_FAST 10 /* PWM period (in PWM ticks). */
#endif /* GPT_FREQ_FAST GPT_PERIOD_FAST */
#endif // EFI_USE_FAST_ADC
// is there a reason to have this configurable at runtime?
#ifndef ADC_FAST_DEVICE
#define ADC_FAST_DEVICE ADCD2
#endif /* ADC_FAST_DEVICE */
static uint32_t slowAdcCounter = 0;
// todo: move this flag to Engine god object
static int adcDebugReporting = false;
static adcsample_t getAvgAdcValue(int index, adcsample_t *samples, int bufDepth, int numChannels) {
uint32_t result = 0;
for (int i = 0; i < bufDepth; i++) {
result += samples[index];
index += numChannels;
}
// this truncation is guaranteed to not be lossy - the average can't be larger than adcsample_t
return static_cast<adcsample_t>(result / bufDepth);
}
// See https://github.com/rusefi/rusefi/issues/976 for discussion on this value
#define ADC_SAMPLING_FAST ADC_SAMPLE_28
#if EFI_USE_FAST_ADC
static void adc_callback_fast(ADCDriver *adcp) {
// State may not be complete if we get a callback for "half done"
if (adcp->state == ADC_COMPLETE) {
onFastAdcComplete(adcp->samples);
}
}
static ADCConversionGroup adcgrpcfgFast = {
.circular = FALSE,
.num_channels = 0,
.end_cb = adc_callback_fast,
.error_cb = nullptr,
/* HW dependent part.*/
.cr1 = 0,
.cr2 = ADC_CR2_SWSTART,
/**
* here we configure all possible channels for fast mode. Some channels would not actually
* be used hopefully that's fine to configure all possible channels.
*
*/
// sample times for channels 10...18
.smpr1 =
ADC_SMPR1_SMP_AN10(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN11(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN12(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN13(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN14(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN15(ADC_SAMPLING_FAST),
// In this field must be specified the sample times for channels 0...9
.smpr2 =
ADC_SMPR2_SMP_AN0(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN1(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN2(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN3(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN4(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN5(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN6(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN7(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN8(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN9(ADC_SAMPLING_FAST),
.htr = 0,
.ltr = 0,
.sqr1 = 0, // Conversion group sequence 13...16 + sequence length
.sqr2 = 0, // Conversion group sequence 7...12
.sqr3 = 0, // Conversion group sequence 1...6
#if ADC_MAX_CHANNELS_COUNT > 16
.sqr4 = 0, // Conversion group sequence 19...24
.sqr5 = 0 // Conversion group sequence 25...30
#endif /* ADC_MAX_CHANNELS_COUNT */
};
AdcDevice fastAdc(&adcgrpcfgFast, fastAdcSampleBuf, ARRAY_SIZE(fastAdcSampleBuf));
static void fast_adc_callback(GPTDriver*) {
#if EFI_INTERNAL_ADC
/*
* Starts an asynchronous ADC conversion operation, the conversion
* will be executed in parallel to the current PWM cycle and will
* terminate before the next PWM cycle.
*/
chSysLockFromISR()
;
if (ADC_FAST_DEVICE.state != ADC_READY &&
ADC_FAST_DEVICE.state != ADC_COMPLETE &&
ADC_FAST_DEVICE.state != ADC_ERROR) {
fastAdc.errorsCount++;
// todo: when? why? firmwareError(OBD_PCM_Processor_Fault, "ADC fast not ready?");
chSysUnlockFromISR()
;
return;
}
adcStartConversionI(&ADC_FAST_DEVICE, &adcgrpcfgFast, fastAdc.samples, ADC_BUF_DEPTH_FAST);
chSysUnlockFromISR()
;
fastAdc.conversionCount++;
#endif /* EFI_INTERNAL_ADC */
}
#endif // EFI_USE_FAST_ADC
static float mcuTemperature;
float getMCUInternalTemperature() {
return mcuTemperature;
}
int getInternalAdcValue(const char *msg, adc_channel_e hwChannel) {
if (!isAdcChannelValid(hwChannel)) {
warning(CUSTOM_OBD_ANALOG_INPUT_NOT_CONFIGURED, "ADC: %s input is not configured", msg);
return -1;
}
#if EFI_ENABLE_MOCK_ADC
if (engine->engineState.mockAdcState.hasMockAdc[hwChannel])
return engine->engineState.mockAdcState.getMockAdcValue(hwChannel);
#endif /* EFI_ENABLE_MOCK_ADC */
#if EFI_USE_FAST_ADC
if (adcHwChannelEnabled[hwChannel] == ADC_FAST) {
int internalIndex = fastAdc.internalAdcIndexByHardwareIndex[hwChannel];
// todo if ADC_BUF_DEPTH_FAST EQ 1
// return fastAdc.samples[internalIndex];
int value = getAvgAdcValue(internalIndex, fastAdc.samples, ADC_BUF_DEPTH_FAST, fastAdc.size());
return value;
}
#endif // EFI_USE_FAST_ADC
return slowAdcSamples[hwChannel - EFI_ADC_0];
}
#if EFI_USE_FAST_ADC
static GPTConfig fast_adc_config = {
GPT_FREQ_FAST,
fast_adc_callback,
0, 0
};
#endif /* EFI_USE_FAST_ADC */
adc_channel_mode_e getAdcMode(adc_channel_e hwChannel) {
#if EFI_USE_FAST_ADC
if (fastAdc.isHwUsed(hwChannel)) {
return ADC_FAST;
}
#endif // EFI_USE_FAST_ADC
return ADC_SLOW;
}
#if EFI_USE_FAST_ADC
int AdcDevice::size() const {
return channelCount;
}
int AdcDevice::getAdcValueByHwChannel(adc_channel_e hwChannel) const {
int internalIndex = internalAdcIndexByHardwareIndex[hwChannel];
return values.adc_data[internalIndex];
}
int AdcDevice::getAdcValueByIndex(int internalIndex) const {
return values.adc_data[internalIndex];
}
void AdcDevice::init(void) {
hwConfig->num_channels = size();
/* driver does this internally */
//hwConfig->sqr1 += ADC_SQR1_NUM_CH(size());
}
bool AdcDevice::isHwUsed(adc_channel_e hwChannelIndex) const {
for (size_t i = 0; i < channelCount; i++) {
if (hardwareIndexByIndernalAdcIndex[i] == hwChannelIndex) {
return true;
}
}
return false;
}
void AdcDevice::enableChannel(adc_channel_e hwChannel) {
if ((channelCount + 1) >= ADC_MAX_CHANNELS_COUNT) {
firmwareError(OBD_PCM_Processor_Fault, "Too many ADC channels configured");
return;
}
int logicChannel = channelCount++;
/* TODO: following is correct for STM32 ADC1/2.
* ADC3 has another input to gpio mapping
* and should be handled separately */
size_t channelAdcIndex = hwChannel - EFI_ADC_0;
internalAdcIndexByHardwareIndex[hwChannel] = logicChannel;
hardwareIndexByIndernalAdcIndex[logicChannel] = hwChannel;
if (logicChannel < 6) {
hwConfig->sqr3 |= channelAdcIndex << (5 * logicChannel);
} else if (logicChannel < 12) {
hwConfig->sqr2 |= channelAdcIndex << (5 * (logicChannel - 6));
} else if (logicChannel < 18) {
hwConfig->sqr1 |= channelAdcIndex << (5 * (logicChannel - 12));
}
#if ADC_MAX_CHANNELS_COUNT > 16
else if (logicChannel < 24) {
hwConfig->sqr4 |= channelAdcIndex << (5 * (logicChannel - 18));
}
else if (logicChannel < 30) {
hwConfig->sqr5 |= channelAdcIndex << (5 * (logicChannel - 24));
}
#endif /* ADC_MAX_CHANNELS_COUNT */
}
adc_channel_e AdcDevice::getAdcHardwareIndexByInternalIndex(int index) const {
return hardwareIndexByIndernalAdcIndex[index];
}
#endif // EFI_USE_FAST_ADC
static void printAdcValue(int channel) {
int value = getAdcValue("print", (adc_channel_e)channel);
float volts = adcToVoltsDivided(value);
efiPrintf("adc voltage : %.2f", volts);
}
static uint32_t slowAdcConversionCount = 0;
static uint32_t slowAdcErrorsCount = 0;
void printFullAdcReport(void) {
#if EFI_USE_FAST_ADC
efiPrintf("fast %d samples", fastAdc.conversionCount);
for (int internalIndex = 0; internalIndex < fastAdc.size(); internalIndex++) {
adc_channel_e hwIndex = fastAdc.getAdcHardwareIndexByInternalIndex(internalIndex);
if (isAdcChannelValid(hwIndex)) {
ioportid_t port = getAdcChannelPort("print", hwIndex);
int pin = getAdcChannelPin(hwIndex);
int adcValue = getAvgAdcValue(internalIndex, fastAdc.samples, ADC_BUF_DEPTH_FAST, fastAdc.size());
float volts = adcToVolts(adcValue);
/* Human index starts from 1 */
efiPrintf(" F ch[%2d] @ %s%d ADC%d 12bit=%4d %.2fV",
internalIndex, portname(port), pin, hwIndex - EFI_ADC_0 + 1, adcValue, volts);
}
}
#endif // EFI_USE_FAST_ADC
efiPrintf("slow %d samples", slowAdcConversionCount);
/* we assume that all slow ADC channels are enabled */
for (int internalIndex = 0; internalIndex < ADC_MAX_CHANNELS_COUNT; internalIndex++) {
adc_channel_e hwIndex = static_cast<adc_channel_e>(internalIndex + EFI_ADC_0);
if (isAdcChannelValid(hwIndex)) {
ioportid_t port = getAdcChannelPort("print", hwIndex);
int pin = getAdcChannelPin(hwIndex);
int adcValue = slowAdcSamples[internalIndex];
float volts = adcToVolts(adcValue);
/* Human index starts from 1 */
efiPrintf(" S ch[%2d] @ %s%d ADC%d 12bit=%4d %.2fV",
internalIndex, portname(port), pin, hwIndex - EFI_ADC_0 + 1, adcValue, volts);
}
}
}
static void setAdcDebugReporting(int value) {
adcDebugReporting = value;
efiPrintf("adcDebug=%d", adcDebugReporting);
}
void waitForSlowAdc(uint32_t lastAdcCounter) {
// we use slowAdcCounter instead of slowAdc.conversionCount because we need ADC_COMPLETE state
// todo: use sync.objects?
while (slowAdcCounter <= lastAdcCounter) {
chThdSleepMilliseconds(1);
}
}
int getSlowAdcCounter() {
return slowAdcCounter;
}
class SlowAdcController : public PeriodicController<256> {
public:
SlowAdcController()
: PeriodicController("ADC", PRIO_ADC, SLOW_ADC_RATE)
{
}
void PeriodicTask(efitick_t nowNt) override {
{
ScopePerf perf(PE::AdcConversionSlow);
slowAdcConversionCount++;
if (!readSlowAnalogInputs(slowAdcSamples)) {
slowAdcErrorsCount++;
return;
}
#ifdef USE_ADC3_VBATT_HACK
void proteusAdcHack();
proteusAdcHack();
#endif
// Ask the port to sample the MCU temperature
mcuTemperature = getMcuTemperature();
}
{
ScopePerf perf(PE::AdcProcessSlow);
slowAdcCounter++;
AdcSubscription::UpdateSubscribers(nowNt);
}
}
};
void addChannel(const char *name, adc_channel_e setting, adc_channel_mode_e mode) {
if (!isAdcChannelValid(setting)) {
return;
}
if (/*type-limited (int)setting < 0 || */(int)setting>=HW_MAX_ADC_INDEX) {
firmwareError(CUSTOM_INVALID_ADC, "Invalid ADC setting %s", name);
return;
}
adcHwChannelEnabled[setting] = mode;
#if EFI_USE_FAST_ADC
if (mode == ADC_FAST) {
fastAdc.enableChannel(setting);
return;
}
#endif
// Nothing to do for slow channels, input is mapped to analog in init_sensors.cpp
}
void removeChannel(const char *name, adc_channel_e setting) {
(void)name;
if (!isAdcChannelValid(setting)) {
return;
}
adcHwChannelEnabled[setting] = ADC_OFF;
}
// Weak link a stub so that every board doesn't have to implement this function
__attribute__((weak)) void setAdcChannelOverrides() { }
static void configureInputs() {
memset(adcHwChannelEnabled, 0, sizeof(adcHwChannelEnabled));
/**
* order of analog channels here is totally random and has no meaning
* we also have some weird implementation with internal indices - that all has no meaning, it's just a random implementation
* which does not mean anything.
*/
addChannel("MAP", engineConfiguration->map.sensor.hwChannel, ADC_FAST);
addChannel("HIP9011", engineConfiguration->hipOutputChannel, ADC_FAST);
// not currently used addChannel("Vref", engineConfiguration->vRefAdcChannel, ADC_SLOW);
addChannel("AUXF#1", engineConfiguration->auxFastSensor1_adcChannel, ADC_FAST);
setAdcChannelOverrides();
}
static SlowAdcController slowAdcController;
void initAdcInputs() {
efiPrintf("initAdcInputs()");
configureInputs();
// migrate to 'enable adcdebug'
addConsoleActionI("adcdebug", &setAdcDebugReporting);
#if EFI_INTERNAL_ADC
portInitAdc();
// Start the slow ADC thread
slowAdcController.Start();
#if EFI_USE_FAST_ADC
fastAdc.init();
gptStart(EFI_INTERNAL_FAST_ADC_GPT, &fast_adc_config);
gptStartContinuous(EFI_INTERNAL_FAST_ADC_GPT, GPT_PERIOD_FAST);
#endif // EFI_USE_FAST_ADC
addConsoleActionI("adc", (VoidInt) printAdcValue);
#else
efiPrintf("ADC disabled");
#endif
}
void printFullAdcReportIfNeeded(void) {
if (!adcDebugReporting)
return;
printFullAdcReport();
}
#else /* not HAL_USE_ADC */
__attribute__((weak)) float getVoltageDivided(const char*, adc_channel_e DECLARE_ENGINE_PARAMETER_SUFFIX) {
return 0;
}
// voltage in MCU universe, from zero to VDD
__attribute__((weak)) float getVoltage(const char*, adc_channel_e DECLARE_ENGINE_PARAMETER_SUFFIX) {
return 0;
}
#endif