rusefi/firmware/controllers/actuators/idle_thread.cpp

854 lines
30 KiB
C++

/**
* @file idle_thread.cpp
* @brief Idle Air Control valve thread.
*
* This thread looks at current RPM and decides if it should increase or decrease IAC duty cycle.
* This file has the hardware & scheduling logic, desired idle level lives separately.
*
*
* @date May 23, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* enable verbose_idle
* disable verbose_idle
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "global.h"
#if EFI_IDLE_CONTROL
#include "engine_configuration.h"
#include "rpm_calculator.h"
#include "pwm_generator_logic.h"
#include "idle_thread.h"
#include "engine_math.h"
#include "engine.h"
#include "periodic_task.h"
#include "allsensors.h"
#include "sensor.h"
#include "electronic_throttle.h"
#include "dc_motors.h"
#if ! EFI_UNIT_TEST
#include "stepper.h"
#include "pin_repository.h"
static StepDirectionStepper iacStepperHw;
static DualHBridgeStepper iacHbridgeHw;
static StepperMotor iacMotor;
#endif /* EFI_UNIT_TEST */
static Logging *logger;
EXTERN_ENGINE;
#if EFI_UNIT_TEST
Engine *unitTestEngine;
#endif
// todo: move all static vars to engine->engineState.idle?
static bool prettyClose = false;
static bool shouldResetPid = false;
// The idea of 'mightResetPid' is to reset PID only once - each time when TPS > idlePidDeactivationTpsThreshold.
// The throttle pedal can be pressed for a long time, making the PID data obsolete (thus the reset is required).
// We set 'mightResetPid' to true only if PID was actually used (i.e. idlePid.getOutput() was called) to save some CPU resources.
// See automaticIdleController().
static bool mightResetPid = false;
// This is needed to slowly turn on the PID back after it was reset.
static bool wasResetPid = false;
// This is used when the PID configuration is changed, to guarantee the reset
static bool mustResetPid = false;
static efitimeus_t restoreAfterPidResetTimeUs = 0;
class PidWithOverrides : public PidIndustrial {
public:
float getOffset() const override {
#if EFI_UNIT_TEST
Engine *engine = unitTestEngine;
EXPAND_Engine;
#endif
float result = parameters->offset;
#if EFI_FSIO
if (engineConfiguration->useFSIO12ForIdleOffset) {
return result + ENGINE(fsioState.fsioIdleOffset);
}
#endif /* EFI_FSIO */
return result;
}
float getMinValue() const override {
#if EFI_UNIT_TEST
Engine *engine = unitTestEngine;
EXPAND_Engine;
#endif
float result = parameters->minValue;
#if EFI_FSIO
if (engineConfiguration->useFSIO13ForIdleMinValue) {
return result + ENGINE(fsioState.fsioIdleMinValue);
}
#endif /* EFI_FSIO */
return result;
}
};
static PidWithOverrides industrialWithOverrideIdlePid;
#if EFI_IDLE_PID_CIC
// Use PID with CIC integrator
static PidCic idleCicPid;
#endif //EFI_IDLE_PID_CIC
Pid * getIdlePid(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_IDLE_PID_CIC
if (CONFIG(useCicPidForIdle)) {
return &idleCicPid;
}
#endif /* EFI_IDLE_PID_CIC */
return &industrialWithOverrideIdlePid;
}
float getIdlePidOffset(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getOffset();
}
float getIdlePidMinValue(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getMinValue();
}
// todo: extract interface for idle valve hardware, with solenoid and stepper implementations?
static SimplePwm idleSolenoidOpen("idle open");
static SimplePwm idleSolenoidClose("idle close");
static uint32_t lastCrankingCyclesCounter = 0;
static float lastCrankingIacPosition;
static iacPidMultiplier_t iacPidMultMap("iacPidMultiplier");
/**
* When the IAC position value change is insignificant (lower than this threshold), leave the poor valve alone
* todo: why do we have this logic? is this ever useful?
* See
*/
static percent_t idlePositionSensitivityThreshold = 0.0f;
#if ! EFI_UNIT_TEST
void idleDebug(const char *msg, percent_t value) {
scheduleMsg(logger, "idle debug: %s%.2f", msg, value);
}
static void showIdleInfo(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
const char * idleModeStr = getIdle_mode_e(engineConfiguration->idleMode);
scheduleMsg(logger, "useStepperIdle=%s useHbridges=%s",
boolToString(CONFIG(useStepperIdle)), boolToString(CONFIG(useHbridges)));
scheduleMsg(logger, "idleMode=%s position=%.2f",
idleModeStr, getIdlePosition());
if (CONFIG(useStepperIdle)) {
if (CONFIG(useHbridges)) {
scheduleMsg(logger, "Coil A:");
scheduleMsg(logger, " pin1=%s", hwPortname(CONFIG(etbIo2[0].directionPin1)));
scheduleMsg(logger, " pin2=%s", hwPortname(CONFIG(etbIo2[0].directionPin2)));
showDcMotorInfo(logger, 2);
scheduleMsg(logger, "Coil B:");
scheduleMsg(logger, " pin1=%s", hwPortname(CONFIG(etbIo2[1].directionPin1)));
scheduleMsg(logger, " pin2=%s", hwPortname(CONFIG(etbIo2[1].directionPin2)));
showDcMotorInfo(logger, 3);
} else {
scheduleMsg(logger, "directionPin=%s reactionTime=%.2f", hwPortname(CONFIG(idle).stepperDirectionPin),
engineConfiguration->idleStepperReactionTime);
scheduleMsg(logger, "stepPin=%s steps=%d", hwPortname(CONFIG(idle).stepperStepPin),
engineConfiguration->idleStepperTotalSteps);
scheduleMsg(logger, "enablePin=%s/%d", hwPortname(engineConfiguration->stepperEnablePin),
engineConfiguration->stepperEnablePinMode);
}
} else {
if (!CONFIG(isDoubleSolenoidIdle)) {
scheduleMsg(logger, "idle valve freq=%d on %s", CONFIG(idle).solenoidFrequency,
hwPortname(CONFIG(idle).solenoidPin));
} else {
scheduleMsg(logger, "idle valve freq=%d on %s", CONFIG(idle).solenoidFrequency,
hwPortname(CONFIG(idle).solenoidPin));
scheduleMsg(logger, " and %s", hwPortname(CONFIG(secondSolenoidPin)));
}
}
if (engineConfiguration->idleMode == IM_AUTO) {
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->showPidStatus(logger, "idle");
}
}
void setIdleMode(idle_mode_e value DECLARE_ENGINE_PARAMETER_SUFFIX) {
engineConfiguration->idleMode = value ? IM_AUTO : IM_MANUAL;
showIdleInfo();
}
#endif // EFI_UNIT_TEST
void applyIACposition(percent_t position DECLARE_ENGINE_PARAMETER_SUFFIX) {
/**
* currently idle level is an percent value (0-100 range), and PWM takes a float in the 0..1 range
* todo: unify?
*/
float duty = PERCENT_TO_DUTY(position);
if (CONFIG(useETBforIdleControl)) {
if (!Sensor::hasSensor(SensorType::AcceleratorPedal)) {
firmwareError(CUSTOM_NO_ETB_FOR_IDLE, "No ETB to use for idle");
return;
}
#if EFI_ELECTRONIC_THROTTLE_BODY
setEtbIdlePosition(position PASS_ENGINE_PARAMETER_SUFFIX);
#endif // EFI_ELECTRONIC_THROTTLE_BODY
#if ! EFI_UNIT_TEST
} else if (CONFIG(useStepperIdle)) {
iacMotor.setTargetPosition(duty * engineConfiguration->idleStepperTotalSteps);
#endif /* EFI_UNIT_TEST */
} else if (CONFIG(dcMotorIdleValve)) {
#if EFI_ELECTRONIC_THROTTLE_BODY
setEtbIdlePosition(position PASS_ENGINE_PARAMETER_SUFFIX);
#endif // EFI_ELECTRONIC_THROTTLE_BODY
} else {
if (!CONFIG(isDoubleSolenoidIdle)) {
idleSolenoidOpen.setSimplePwmDutyCycle(duty);
} else {
/* use 0.01..0.99 range */
float idle_range = 0.98; /* move to config? */
float idle_open, idle_close;
idle_open = 0.01 + idle_range * duty;
idle_close = 0.01 + idle_range * (1.0 - duty);
idleSolenoidOpen.setSimplePwmDutyCycle(idle_open);
idleSolenoidClose.setSimplePwmDutyCycle(idle_close);
}
}
}
#if ! EFI_UNIT_TEST
percent_t getIdlePosition(void) {
return engine->engineState.idle.currentIdlePosition;
}
void setManualIdleValvePosition(int positionPercent) {
if (positionPercent < 1 || positionPercent > 99)
return;
scheduleMsg(logger, "setting idle valve position %d", positionPercent);
#if ! EFI_UNIT_TEST
showIdleInfo();
#endif /* EFI_UNIT_TEST */
// todo: this is not great that we have to write into configuration here
CONFIG(manIdlePosition) = positionPercent;
}
#endif /* EFI_UNIT_TEST */
static percent_t manualIdleController(float cltCorrection DECLARE_ENGINE_PARAMETER_SUFFIX) {
percent_t correctedPosition = cltCorrection * CONFIG(manIdlePosition);
return correctedPosition;
}
/**
* idle blip is a development tool: alternator PID research for instance have benefited from a repetitive change of RPM
*/
static percent_t blipIdlePosition;
static efitimeus_t timeToStopBlip = 0;
static efitimeus_t timeToStopIdleTest = 0;
/**
* I use this questionable feature to tune acceleration enrichment
*/
static void blipIdle(int idlePosition, int durationMs) {
if (timeToStopBlip != 0) {
return; // already in idle blip
}
blipIdlePosition = idlePosition;
timeToStopBlip = getTimeNowUs() + 1000 * durationMs;
}
static void finishIdleTestIfNeeded() {
if (timeToStopIdleTest != 0 && getTimeNowUs() > timeToStopIdleTest)
timeToStopIdleTest = 0;
}
static void undoIdleBlipIfNeeded() {
if (timeToStopBlip != 0 && getTimeNowUs() > timeToStopBlip) {
timeToStopBlip = 0;
}
}
static bool isOutOfAutomaticIdleCondition(float rpm, int targetRpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
// first, check the pedal threshold
if (CONFIG(throttlePedalUpPin) != GPIO_UNASSIGNED) {
if (!engine->engineState.idle.throttlePedalUpState) {
return true;
}
} else {
const auto [valid, pos] = Sensor::get(SensorType::DriverThrottleIntent);
// Disable auto idle in case of TPS/Pedal failure
if (!valid) {
return true;
}
if (pos > CONFIG(idlePidDeactivationTpsThreshold))
return true;
}
// then, check the RPM threshold (if in coasting mode)
if (CONFIG(idlePidRpmUpperLimit) > 0) {
int idlePidLowerRpm = targetRpm + CONFIG(idlePidRpmDeadZone);
int upperRpmLimit = idlePidLowerRpm + CONFIG(idlePidRpmUpperLimit);
if (rpm > upperRpmLimit) {
return true;
}
}
return false;
}
/**
* @return idle valve position percentage for automatic closed loop mode
*/
static percent_t automaticIdleController(float tpsPos DECLARE_ENGINE_PARAMETER_SUFFIX) {
// todo: move this to pid_s one day
industrialWithOverrideIdlePid.antiwindupFreq = engineConfiguration->idle_antiwindupFreq;
industrialWithOverrideIdlePid.derivativeFilterLoss = engineConfiguration->idle_derivativeFilterLoss;
// get Target RPM for Auto-PID from a separate table
int targetRpm = getTargetRpmForIdleCorrection(PASS_ENGINE_PARAMETER_SIGNATURE);
efitick_t nowNt = getTimeNowNt();
efitimeus_t nowUs = getTimeNowUs();
float rpm;
if (CONFIG(useInstantRpmForIdle)) {
rpm = engine->triggerCentral.triggerState.calculateInstantRpm(NULL, nowNt PASS_ENGINE_PARAMETER_SUFFIX);
} else {
rpm = GET_RPM();
}
if (isOutOfAutomaticIdleCondition(rpm, targetRpm PASS_ENGINE_PARAMETER_SUFFIX)) {
// Don't store old I and D terms if PID doesn't work anymore.
// Otherwise they will affect the idle position much later, when the throttle is closed.
if (mightResetPid) {
mightResetPid = false;
shouldResetPid = true;
}
engine->engineState.idle.idleState = TPS_THRESHOLD;
// just leave IAC position as is (but don't return currentIdlePosition - it may already contain additionalAir)
return engine->engineState.idle.baseIdlePosition;
}
// #1553 we need to give FSIO variable offset or minValue a chance
bool acToggleJustTouched = (nowUs - engine->acSwitchLastChangeTime) < MS2US(500);
// check if within the dead zone
if (!acToggleJustTouched && absI(rpm - targetRpm) <= CONFIG(idlePidRpmDeadZone)) {
engine->engineState.idle.idleState = RPM_DEAD_ZONE;
// current RPM is close enough, no need to change anything
return engine->engineState.idle.baseIdlePosition;
}
// When rpm < targetRpm, there's a risk of dropping RPM too low - and the engine dies out.
// So PID reaction should be increased by adding extra percent to PID-error:
percent_t errorAmpCoef = 1.0f;
if (rpm < targetRpm)
errorAmpCoef += (float)CONFIG(pidExtraForLowRpm) / PERCENT_MULT;
// if PID was previously reset, we store the time when it turned on back (see errorAmpCoef correction below)
if (wasResetPid) {
restoreAfterPidResetTimeUs = nowUs;
wasResetPid = false;
}
// increase the errorAmpCoef slowly to restore the process correctly after the PID reset
// todo: move restoreAfterPidResetTimeUs to engineState.idle?
efitimeus_t timeSincePidResetUs = nowUs - /*engine->engineState.idle.*/restoreAfterPidResetTimeUs;
// todo: add 'pidAfterResetDampingPeriodMs' setting
errorAmpCoef = interpolateClamped(0.0f, 0.0f, MS2US(/*CONFIG(pidAfterResetDampingPeriodMs)*/1000), errorAmpCoef, timeSincePidResetUs);
// If errorAmpCoef > 1.0, then PID thinks that RPM is lower than it is, and controls IAC more aggressively
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->setErrorAmplification(errorAmpCoef);
percent_t newValue = getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getOutput(targetRpm, rpm);
engine->engineState.idle.idleState = PID_VALUE;
// the state of PID has been changed, so we might reset it now, but only when needed (see idlePidDeactivationTpsThreshold)
mightResetPid = true;
// Apply PID Multiplier if used
if (CONFIG(useIacPidMultTable)) {
float engineLoad = getFuelingLoad(PASS_ENGINE_PARAMETER_SIGNATURE);
float multCoef = iacPidMultMap.getValue(rpm / RPM_1_BYTE_PACKING_MULT, engineLoad);
// PID can be completely disabled of multCoef==0, or it just works as usual if multCoef==1
newValue = interpolateClamped(0.0f, engine->engineState.idle.baseIdlePosition, 1.0f, newValue, multCoef);
}
// Apply PID Deactivation Threshold as a smooth taper for TPS transients.
// if tps==0 then PID just works as usual, or we completely disable it if tps>=threshold
newValue = interpolateClamped(0.0f, newValue, CONFIG(idlePidDeactivationTpsThreshold), engine->engineState.idle.baseIdlePosition, tpsPos);
// Interpolate to the manual position when RPM is close to the upper RPM limit (if idlePidRpmUpperLimit is set).
// If RPM increases and the throttle is closed, then we're in coasting mode, and we should smoothly disable auto-pid.
// If we just leave IAC at baseIdlePosition (as in case of TPS deactivation threshold), RPM would get stuck.
// That's why there's 'useIacTableForCoasting' setting which involves a separate IAC position table for coasting (iacCoasting).
// Currently it's user-defined. But eventually we'll use a real calculated and stored IAC position instead.
int idlePidLowerRpm = targetRpm + CONFIG(idlePidRpmDeadZone);
if (CONFIG(idlePidRpmUpperLimit) > 0) {
engine->engineState.idle.idleState = PID_UPPER;
const auto [cltValid, clt] = Sensor::get(SensorType::Clt);
if (CONFIG(useIacTableForCoasting) && cltValid) {
percent_t iacPosForCoasting = interpolate2d("iacCoasting", clt, CONFIG(iacCoastingBins), CONFIG(iacCoasting));
newValue = interpolateClamped(idlePidLowerRpm, newValue, idlePidLowerRpm + CONFIG(idlePidRpmUpperLimit), iacPosForCoasting, rpm);
} else {
// Well, just leave it as is, without PID regulation...
newValue = engine->engineState.idle.baseIdlePosition;
}
}
return newValue;
}
int IdleController::getPeriodMs() {
return GET_PERIOD_LIMITED(&engineConfiguration->idleRpmPid);
}
void IdleController::PeriodicTask() {
efiAssertVoid(OBD_PCM_Processor_Fault, engineConfiguration != NULL, "engineConfiguration pointer");
/*
* Here we have idle logic thread - actual stepper movement is implemented in a separate
* working thread,
* @see stepper.cpp
*/
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->iTermMin = engineConfiguration->idlerpmpid_iTermMin;
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->iTermMax = engineConfiguration->idlerpmpid_iTermMax;
SensorResult tps = Sensor::get(SensorType::DriverThrottleIntent);
engine->engineState.isAutomaticIdle = tps.Valid && engineConfiguration->idleMode == IM_AUTO;
if (engineConfiguration->isVerboseIAC && engine->engineState.isAutomaticIdle) {
scheduleMsg(logger, "Idle state %s%s", getIdle_state_e(engine->engineState.idle.idleState),
(prettyClose ? " pretty close" : ""));
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->showPidStatus(logger, "idle");
}
if (shouldResetPid) {
// we reset only if I-term is negative, because the positive I-term is good - it keeps RPM from dropping too low
if (getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getIntegration() <= 0 || mustResetPid) {
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->reset();
mustResetPid = false;
}
// alternatorPidResetCounter++;
shouldResetPid = false;
wasResetPid = true;
}
#if EFI_GPIO_HARDWARE
// this value is not used yet
if (CONFIG(clutchDownPin) != GPIO_UNASSIGNED) {
engine->clutchDownState = efiReadPin(CONFIG(clutchDownPin));
}
if (hasAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE)) {
bool result = getAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE);
if (engine->acSwitchState != result) {
engine->acSwitchState = result;
engine->acSwitchLastChangeTime = getTimeNowUs();
}
engine->acSwitchState = result;
}
if (CONFIG(clutchUpPin) != GPIO_UNASSIGNED) {
engine->clutchUpState = efiReadPin(CONFIG(clutchUpPin));
}
if (CONFIG(throttlePedalUpPin) != GPIO_UNASSIGNED) {
engine->engineState.idle.throttlePedalUpState = efiReadPin(CONFIG(throttlePedalUpPin));
}
if (engineConfiguration->brakePedalPin != GPIO_UNASSIGNED) {
engine->brakePedalState = efiReadPin(engineConfiguration->brakePedalPin);
}
#endif /* EFI_GPIO_HARDWARE */
finishIdleTestIfNeeded();
undoIdleBlipIfNeeded();
const auto [cltValid, clt] = Sensor::get(SensorType::Clt);
#if EFI_SHAFT_POSITION_INPUT
bool isRunning = engine->rpmCalculator.isRunning(PASS_ENGINE_PARAMETER_SIGNATURE);
#else
bool isRunning = false;
#endif /* EFI_SHAFT_POSITION_INPUT */
// cltCorrection is used only for cranking or running in manual mode
float cltCorrection;
if (!cltValid)
cltCorrection = 1.0f;
// Use separate CLT correction table for cranking
else if (engineConfiguration->overrideCrankingIacSetting && !isRunning) {
cltCorrection = interpolate2d("cltCrankingT", clt, config->cltCrankingCorrBins, config->cltCrankingCorr);
} else {
// this value would be ignored if running in AUTO mode
// but we need it while cranking in AUTO mode
cltCorrection = interpolate2d("cltT", clt, config->cltIdleCorrBins, config->cltIdleCorr);
}
percent_t iacPosition;
if (timeToStopBlip != 0) {
iacPosition = blipIdlePosition;
engine->engineState.idle.baseIdlePosition = iacPosition;
engine->engineState.idle.idleState = BLIP;
} else if (!isRunning) {
// during cranking it's always manual mode, PID would make no sense during cranking
iacPosition = clampPercentValue(cltCorrection * engineConfiguration->crankingIACposition);
// save cranking position & cycles counter for taper transition
lastCrankingIacPosition = iacPosition;
lastCrankingCyclesCounter = engine->rpmCalculator.getRevolutionCounterSinceStart();
engine->engineState.idle.baseIdlePosition = iacPosition;
} else {
if (!tps.Valid || engineConfiguration->idleMode == IM_MANUAL) {
// let's re-apply CLT correction
iacPosition = manualIdleController(cltCorrection PASS_ENGINE_PARAMETER_SUFFIX);
} else {
iacPosition = automaticIdleController(tps.Value PASS_ENGINE_PARAMETER_SUFFIX);
}
iacPosition = clampPercentValue(iacPosition);
// store 'base' iacPosition without adjustments
engine->engineState.idle.baseIdlePosition = iacPosition;
float additionalAir = (float)engineConfiguration->iacByTpsTaper;
if (tps.Valid) {
iacPosition += interpolateClamped(0.0f, 0.0f, CONFIG(idlePidDeactivationTpsThreshold), additionalAir, tps.Value);
}
// taper transition from cranking to running (uint32_t to float conversion is safe here)
if (engineConfiguration->afterCrankingIACtaperDuration > 0)
iacPosition = interpolateClamped(lastCrankingCyclesCounter, lastCrankingIacPosition,
lastCrankingCyclesCounter + engineConfiguration->afterCrankingIACtaperDuration, iacPosition,
engine->rpmCalculator.getRevolutionCounterSinceStart());
}
if (engineConfiguration->debugMode == DBG_IDLE_CONTROL) {
if (engineConfiguration->idleMode == IM_AUTO) {
#if EFI_TUNER_STUDIO
// see also tsOutputChannels->idlePosition
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->postState(&tsOutputChannels, 1000000);
tsOutputChannels.debugIntField4 = engine->engineState.idle.idleState;
#endif /* EFI_TUNER_STUDIO */
} else {
#if EFI_TUNER_STUDIO
tsOutputChannels.debugFloatField1 = iacPosition;
tsOutputChannels.debugIntField1 = iacMotor.getTargetPosition();
#endif /* EFI_TUNER_STUDIO */
}
}
prettyClose = absF(iacPosition - engine->engineState.idle.currentIdlePosition) < idlePositionSensitivityThreshold;
// The threshold is dependent on IAC type (see initIdleHardware())
if (prettyClose) {
return; // value is pretty close, let's leave the poor valve alone
}
engine->engineState.idle.currentIdlePosition = iacPosition;
applyIACposition(engine->engineState.idle.currentIdlePosition PASS_ENGINE_PARAMETER_SUFFIX);
}
IdleController idleControllerInstance;
static void applyPidSettings(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->updateFactors(engineConfiguration->idleRpmPid.pFactor, engineConfiguration->idleRpmPid.iFactor, engineConfiguration->idleRpmPid.dFactor);
iacPidMultMap.init(CONFIG(iacPidMultTable), CONFIG(iacPidMultLoadBins), CONFIG(iacPidMultRpmBins));
}
void setDefaultIdleParameters(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
engineConfiguration->idleRpmPid.pFactor = 0.1f;
engineConfiguration->idleRpmPid.iFactor = 0.05f;
engineConfiguration->idleRpmPid.dFactor = 0.0f;
engineConfiguration->idleRpmPid.periodMs = 10;
engineConfiguration->idlerpmpid_iTermMin = -200;
engineConfiguration->idlerpmpid_iTermMax = 200;
}
#if ! EFI_UNIT_TEST
void onConfigurationChangeIdleCallback(engine_configuration_s *previousConfiguration) {
shouldResetPid = !getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->isSame(&previousConfiguration->idleRpmPid);
mustResetPid = shouldResetPid;
idleSolenoidOpen.setFrequency(CONFIG(idle).solenoidFrequency);
idleSolenoidClose.setFrequency(CONFIG(idle).solenoidFrequency);
}
void setTargetIdleRpm(int value) {
setTargetRpmCurve(value PASS_ENGINE_PARAMETER_SUFFIX);
scheduleMsg(logger, "target idle RPM %d", value);
showIdleInfo();
}
void setIdleOffset(float value) {
engineConfiguration->idleRpmPid.offset = value;
showIdleInfo();
}
void setIdlePFactor(float value) {
engineConfiguration->idleRpmPid.pFactor = value;
applyPidSettings();
showIdleInfo();
}
void setIdleIFactor(float value) {
engineConfiguration->idleRpmPid.iFactor = value;
applyPidSettings();
showIdleInfo();
}
void setIdleDFactor(float value) {
engineConfiguration->idleRpmPid.dFactor = value;
applyPidSettings();
showIdleInfo();
}
void setIdleDT(int value) {
engineConfiguration->idleRpmPid.periodMs = value;
applyPidSettings();
showIdleInfo();
}
/**
* Idle test would activate the solenoid for three seconds
*/
void startIdleBench(void) {
timeToStopIdleTest = getTimeNowUs() + MS2US(3000); // 3 seconds
scheduleMsg(logger, "idle valve bench test");
showIdleInfo();
}
static void applyIdleSolenoidPinState(int stateIndex, PwmConfig *state) /* pwm_gen_callback */ {
efiAssertVoid(CUSTOM_ERR_6645, stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex");
efiAssertVoid(CUSTOM_ERR_6646, state->multiChannelStateSequence.waveCount == 1, "invalid idle waveCount");
OutputPin *output = state->outputPins[0];
int value = state->multiChannelStateSequence.getChannelState(/*channelIndex*/0, stateIndex);
if (!value /* always allow turning solenoid off */ ||
(GET_RPM_VALUE != 0 || timeToStopIdleTest != 0) /* do not run solenoid unless engine is spinning or bench testing in progress */
) {
output->setValue(value);
}
}
bool isIdleHardwareRestartNeeded() {
return isConfigurationChanged(stepperEnablePin) ||
isConfigurationChanged(stepperEnablePinMode) ||
isConfigurationChanged(idle.stepperStepPin) ||
isConfigurationChanged(idle.solenoidFrequency) ||
isConfigurationChanged(useStepperIdle) ||
// isConfigurationChanged() ||
isConfigurationChanged(useETBforIdleControl) ||
isConfigurationChanged(idle.solenoidPin) ||
isConfigurationChanged(secondSolenoidPin);
}
void stopIdleHardware(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_PROD_CODE
brain_pin_markUnused(activeConfiguration.stepperEnablePin);
brain_pin_markUnused(activeConfiguration.idle.stepperStepPin);
brain_pin_markUnused(activeConfiguration.idle.solenoidPin);
brain_pin_markUnused(activeConfiguration.secondSolenoidPin);
// brain_pin_markUnused(activeConfiguration.idle.);
// brain_pin_markUnused(activeConfiguration.idle.);
// brain_pin_markUnused(activeConfiguration.idle.);
// brain_pin_markUnused(activeConfiguration.idle.);
#endif /* EFI_PROD_CODE */
}
void initIdleHardware(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
if (CONFIG(useStepperIdle)) {
StepperHw* hw;
if (CONFIG(useHbridges)) {
auto motorA = initDcMotor(2, /*useTwoWires*/ true PASS_ENGINE_PARAMETER_SUFFIX);
auto motorB = initDcMotor(3, /*useTwoWires*/ true PASS_ENGINE_PARAMETER_SUFFIX);
if (motorA && motorB) {
iacHbridgeHw.initialize(
motorA,
motorB,
CONFIG(idleStepperReactionTime)
);
}
hw = &iacHbridgeHw;
} else {
iacStepperHw.initialize(
CONFIG(idle).stepperStepPin,
CONFIG(idle).stepperDirectionPin,
CONFIG(stepperDirectionPinMode),
CONFIG(idleStepperReactionTime),
CONFIG(stepperEnablePin),
CONFIG(stepperEnablePinMode)
);
hw = &iacStepperHw;
}
iacMotor.initialize(hw, CONFIG(idleStepperTotalSteps), logger);
// This greatly improves PID accuracy for steppers with a small number of steps
idlePositionSensitivityThreshold = 1.0f / engineConfiguration->idleStepperTotalSteps;
} else if (!engineConfiguration->useETBforIdleControl) {
/**
* Start PWM for idleValvePin
*/
// todo: even for double-solenoid mode we can probably use same single SimplePWM
// todo: open question why do we pass 'OutputPin' into 'startSimplePwmExt' if we have custom applyIdleSolenoidPinState listener anyway?
if (!CONFIG(isDoubleSolenoidIdle)) {
startSimplePwmExt(&idleSolenoidOpen, "Idle Valve",
&engine->executor,
CONFIG(idle).solenoidPin, &enginePins.idleSolenoidPin,
CONFIG(idle).solenoidFrequency, PERCENT_TO_DUTY(CONFIG(manIdlePosition)),
(pwm_gen_callback*)applyIdleSolenoidPinState);
} else {
startSimplePwmExt(&idleSolenoidOpen, "Idle Valve Open",
&engine->executor,
CONFIG(idle).solenoidPin, &enginePins.idleSolenoidPin,
CONFIG(idle).solenoidFrequency, PERCENT_TO_DUTY(CONFIG(manIdlePosition)),
(pwm_gen_callback*)applyIdleSolenoidPinState);
startSimplePwmExt(&idleSolenoidClose, "Idle Valve Close",
&engine->executor,
CONFIG(secondSolenoidPin), &enginePins.secondIdleSolenoidPin,
CONFIG(idle).solenoidFrequency, PERCENT_TO_DUTY(CONFIG(manIdlePosition)),
(pwm_gen_callback*)applyIdleSolenoidPinState);
}
idlePositionSensitivityThreshold = 0.0f;
}
}
#endif /* EFI_UNIT_TEST */
void startIdleThread(Logging*sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) {
logger = sharedLogger;
INJECT_ENGINE_REFERENCE(&idleControllerInstance);
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->initPidClass(&engineConfiguration->idleRpmPid);
#if ! EFI_UNIT_TEST
// todo: we still have to explicitly init all hardware on start in addition to handling configuration change via
// 'applyNewHardwareSettings' todo: maybe unify these two use-cases?
initIdleHardware(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_UNIT_TEST */
DISPLAY_STATE(Engine)
DISPLAY_TEXT(Idle_State);
engine->engineState.idle.DISPLAY_FIELD(idleState) = INIT;
DISPLAY_TEXT(EOL);
DISPLAY_TEXT(Base_Position);
engine->engineState.idle.DISPLAY_FIELD(baseIdlePosition) = -100.0f;
DISPLAY_TEXT(Position_with_Adjustments);
engine->engineState.idle.DISPLAY_FIELD(currentIdlePosition) = -100.0f;
DISPLAY_TEXT(EOL);
DISPLAY_TEXT(EOL);
DISPLAY_SENSOR(TPS);
DISPLAY_TEXT(EOL);
DISPLAY_TEXT(Throttle_Up_State);
DISPLAY(DISPLAY_FIELD(throttlePedalUpState));
DISPLAY(DISPLAY_CONFIG(throttlePedalUpPin));
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_IF(isAutomaticIdle))
DISPLAY_STATE(idle_pid)
DISPLAY_TEXT(Output);
DISPLAY(DISPLAY_FIELD(output));
DISPLAY_TEXT(iTerm);
DISPLAY(DISPLAY_FIELD(iTerm));
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Settings);
DISPLAY(DISPLAY_CONFIG(IDLERPMPID_PFACTOR));
DISPLAY(DISPLAY_CONFIG(IDLERPMPID_IFACTOR));
DISPLAY(DISPLAY_CONFIG(IDLERPMPID_DFACTOR));
DISPLAY(DISPLAY_CONFIG(IDLERPMPID_OFFSET));
DISPLAY_TEXT(eol);
DISPLAY_TEXT(ETB_Idle);
DISPLAY_STATE(Engine)
DISPLAY(DISPLAY_FIELD(etbIdleAddition));
/* DISPLAY_ELSE */
DISPLAY_TEXT(Manual_idle_control);
/* DISPLAY_ENDIF */
//scheduleMsg(logger, "initial idle %d", idlePositionController.value);
idleControllerInstance.Start();
#if ! EFI_UNIT_TEST
// this is neutral/no gear switch input. on Miata it's wired both to clutch pedal and neutral in gearbox
// this switch is not used yet
if (CONFIG(clutchDownPin) != GPIO_UNASSIGNED) {
efiSetPadMode("clutch down switch", CONFIG(clutchDownPin),
getInputMode(CONFIG(clutchDownPinMode)));
}
if (CONFIG(clutchUpPin) != GPIO_UNASSIGNED) {
efiSetPadMode("clutch up switch", CONFIG(clutchUpPin),
getInputMode(CONFIG(clutchUpPinMode)));
}
if (CONFIG(throttlePedalUpPin) != GPIO_UNASSIGNED) {
efiSetPadMode("throttle pedal up switch", CONFIG(throttlePedalUpPin),
getInputMode(CONFIG(throttlePedalUpPinMode)));
}
if (engineConfiguration->brakePedalPin != GPIO_UNASSIGNED) {
#if EFI_PROD_CODE
efiSetPadMode("brake pedal switch", engineConfiguration->brakePedalPin,
getInputMode(engineConfiguration->brakePedalPinMode));
#endif /* EFI_PROD_CODE */
}
addConsoleAction("idleinfo", showIdleInfo);
addConsoleActionII("blipidle", blipIdle);
// split this whole file into manual controller and auto controller? move these commands into the file
// which would be dedicated to just auto-controller?
addConsoleAction("idlebench", startIdleBench);
#endif /* EFI_UNIT_TEST */
applyPidSettings(PASS_ENGINE_PARAMETER_SIGNATURE);
}
#endif /* EFI_IDLE_CONTROL */