328 lines
13 KiB
C++
328 lines
13 KiB
C++
/**
|
|
* @file advance_map.cpp
|
|
*
|
|
* @date Mar 27, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2019
|
|
*
|
|
* This file is part of rusEfi - see http://rusefi.com
|
|
*
|
|
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
|
|
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with this program.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "global.h"
|
|
#include "engine_configuration.h"
|
|
#include "engine.h"
|
|
#include "advance_map.h"
|
|
#include "interpolation.h"
|
|
#include "engine_math.h"
|
|
#include "tps.h"
|
|
#include "idle_thread.h"
|
|
#include "allsensors.h"
|
|
|
|
EXTERN_ENGINE
|
|
;
|
|
|
|
static ign_Map3D_t advanceMap("advance");
|
|
// This coeff in ctor parameter is sufficient for int16<->float conversion!
|
|
static ign_tps_Map3D_t advanceTpsMap("advanceTps", 1.0 / ADVANCE_TPS_STORAGE_MULT);
|
|
static ign_Map3D_t iatAdvanceCorrectionMap("iat corr");
|
|
|
|
// Init PID later (make it compatible with unit-tests)
|
|
static Pid idleTimingPid;
|
|
static bool shouldResetTimingPid = false;
|
|
|
|
static int minCrankingRpm = 0;
|
|
|
|
#if IGN_LOAD_COUNT == DEFAULT_IGN_LOAD_COUNT
|
|
static const float iatTimingRpmBins[IGN_LOAD_COUNT] = {880, 1260, 1640, 2020, 2400, 2780, 3000, 3380, 3760, 4140, 4520, 5000, 5700, 6500, 7200, 8000};
|
|
|
|
//880 1260 1640 2020 2400 2780 3000 3380 3760 4140 4520 5000 5700 6500 7200 8000
|
|
static const ignition_table_t defaultIatTiming = {
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2},
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2},
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2},
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2},
|
|
{3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 2, 2, 2, 2, 2},
|
|
{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2},
|
|
{ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0},
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
{ 0, 0, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9},
|
|
{ -3.3, -3.4, -4.9, -4.9, -4.9, -4.9, -4.4, -4.4, -4.4, -4.4, -4.4, -0.9, -0.9, -0.9, -0.9, -0.9},
|
|
{ -4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -2.4, -2.4, -2.4, -2.4, -2.4},
|
|
{ -4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -2.9, -2.9, -2.9, -2.9, -2.9},
|
|
{-4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -3.9, -3.9, -3.9, -3.9, -3.9},
|
|
{-4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -3.9, -3.9, -3.9, -3.9, -3.9},
|
|
{-4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -3.9, -3.9, -3.9, -3.9, -3.9},
|
|
};
|
|
|
|
#endif /* IGN_LOAD_COUNT == DEFAULT_IGN_LOAD_COUNT */
|
|
|
|
bool isStep1Condition(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
return CONFIG(enabledStep1Limiter) && rpm >= engineConfiguration->step1rpm;
|
|
}
|
|
|
|
/**
|
|
* @return ignition timing angle advance before TDC
|
|
*/
|
|
static angle_t getRunningAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
if (CONFIG(timingMode) == TM_FIXED)
|
|
return engineConfiguration->fixedTiming;
|
|
|
|
engine->m.beforeAdvance = getTimeNowLowerNt();
|
|
if (cisnan(engineLoad)) {
|
|
warning(CUSTOM_NAN_ENGINE_LOAD, "NaN engine load");
|
|
return NAN;
|
|
}
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(engineLoad), "invalid el", NAN);
|
|
engine->m.beforeZeroTest = getTimeNowLowerNt();
|
|
engine->m.zeroTestTime = getTimeNowLowerNt() - engine->m.beforeZeroTest;
|
|
|
|
if (isStep1Condition(rpm PASS_ENGINE_PARAMETER_SUFFIX)) {
|
|
return engineConfiguration->step1timing;
|
|
}
|
|
|
|
float advanceAngle;
|
|
if (CONFIG(useTPSAdvanceTable)) {
|
|
float tps = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE);
|
|
advanceAngle = advanceTpsMap.getValue((float) rpm, tps);
|
|
} else {
|
|
advanceAngle = advanceMap.getValue((float) rpm, engineLoad);
|
|
}
|
|
|
|
// get advance from the separate table for Idle
|
|
if (CONFIG(useSeparateAdvanceForIdle)) {
|
|
float idleAdvance = interpolate2d("idleAdvance", rpm, config->idleAdvanceBins, config->idleAdvance);
|
|
// interpolate between idle table and normal (running) table using TPS threshold
|
|
float tps = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE);
|
|
advanceAngle = interpolateClamped(0.0f, idleAdvance, CONFIG(idlePidDeactivationTpsThreshold), advanceAngle, tps);
|
|
}
|
|
|
|
engine->m.advanceLookupTime = getTimeNowLowerNt() - engine->m.beforeAdvance;
|
|
return advanceAngle;
|
|
}
|
|
|
|
angle_t getAdvanceCorrections(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
float iatCorrection;
|
|
if (!hasIatSensor()) {
|
|
iatCorrection = 0;
|
|
} else {
|
|
iatCorrection = iatAdvanceCorrectionMap.getValue((float) rpm, getIntakeAirTemperature());
|
|
}
|
|
// PID Ignition Advance angle correction
|
|
float pidTimingCorrection = 0.0f;
|
|
if (CONFIG(useIdleTimingPidControl)) {
|
|
int targetRpm = getTargetRpmForIdleCorrection(PASS_ENGINE_PARAMETER_SIGNATURE);
|
|
int rpmDelta = absI(rpm - targetRpm);
|
|
float tps = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE);
|
|
if (tps >= CONFIG(idlePidDeactivationTpsThreshold)) {
|
|
// we are not in the idle mode anymore, so the 'reset' flag will help us when we return to the idle.
|
|
shouldResetTimingPid = true;
|
|
}
|
|
else if (rpmDelta > CONFIG(idleTimingPidDeadZone) && rpmDelta < CONFIG(idleTimingPidWorkZone) + CONFIG(idlePidFalloffDeltaRpm)) {
|
|
// We're now in the idle mode, and RPM is inside the Timing-PID regulator work zone!
|
|
// So if we need to reset the PID, let's do it now
|
|
if (shouldResetTimingPid) {
|
|
idleTimingPid.reset();
|
|
shouldResetTimingPid = false;
|
|
}
|
|
// get PID value (this is not an actual Advance Angle, but just a additive correction!)
|
|
percent_t timingRawCorr = idleTimingPid.getOutput(targetRpm, rpm,
|
|
/* is this the right dTime? this period is not exactly the period at which this code is invoked*/engineConfiguration->idleTimingPid.periodMs);
|
|
// tps idle-running falloff
|
|
pidTimingCorrection = interpolateClamped(0.0f, timingRawCorr, CONFIG(idlePidDeactivationTpsThreshold), 0.0f, tps);
|
|
// rpm falloff
|
|
pidTimingCorrection = interpolateClamped(0.0f, pidTimingCorrection, CONFIG(idlePidFalloffDeltaRpm), 0.0f, rpmDelta - CONFIG(idleTimingPidWorkZone));
|
|
} else {
|
|
shouldResetTimingPid = true;
|
|
}
|
|
} else {
|
|
shouldResetTimingPid = true;
|
|
}
|
|
|
|
if (engineConfiguration->debugMode == DBG_IGNITION_TIMING) {
|
|
#if EFI_TUNER_STUDIO
|
|
tsOutputChannels.debugFloatField1 = iatCorrection;
|
|
tsOutputChannels.debugFloatField2 = engine->engineState.cltTimingCorrection;
|
|
tsOutputChannels.debugFloatField3 = engine->fsioState.fsioTimingAdjustment;
|
|
tsOutputChannels.debugFloatField4 = pidTimingCorrection;
|
|
#endif /* EFI_TUNER_STUDIO */
|
|
}
|
|
|
|
return iatCorrection
|
|
+ engine->fsioState.fsioTimingAdjustment
|
|
+ engine->engineState.cltTimingCorrection
|
|
+ pidTimingCorrection
|
|
// todo: uncomment once we get usable knock - engine->knockCount
|
|
;
|
|
}
|
|
|
|
/**
|
|
* @return ignition timing angle advance before TDC for Cranking
|
|
*/
|
|
static angle_t getCrankingAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
// get advance from the separate table for Cranking
|
|
if (CONFIG(useSeparateAdvanceForCranking)) {
|
|
return interpolate2d("crankingAdvance", rpm, CONFIG(crankingAdvanceBins), CONFIG(crankingAdvance));
|
|
}
|
|
|
|
// Interpolate the cranking timing angle to the earlier running angle for faster engine start
|
|
angle_t crankingToRunningTransitionAngle = getRunningAdvance(CONFIG(cranking.rpm), engineLoad PASS_ENGINE_PARAMETER_SUFFIX);
|
|
// interpolate not from zero, but starting from min. possible rpm detected
|
|
if (rpm < minCrankingRpm || minCrankingRpm == 0)
|
|
minCrankingRpm = rpm;
|
|
return interpolateClamped(minCrankingRpm, CONFIG(crankingTimingAngle), CONFIG(cranking.rpm), crankingToRunningTransitionAngle, rpm);
|
|
}
|
|
|
|
|
|
angle_t getAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
|
|
if (cisnan(engineLoad)) {
|
|
return 0; // any error should already be reported
|
|
}
|
|
angle_t angle;
|
|
if (ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE)) {
|
|
angle = getCrankingAdvance(rpm, engineLoad PASS_ENGINE_PARAMETER_SUFFIX);
|
|
assertAngleRange(angle, "crAngle", CUSTOM_ERR_6680);
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "cr_AngleN", 0);
|
|
if (CONFIG(useAdvanceCorrectionsForCranking)) {
|
|
angle_t correction = getAdvanceCorrections(rpm PASS_ENGINE_PARAMETER_SUFFIX);
|
|
if (!cisnan(correction)) { // correction could be NaN during settings update
|
|
angle += correction;
|
|
}
|
|
}
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "cr_AngleN2", 0);
|
|
} else {
|
|
angle = getRunningAdvance(rpm, engineLoad PASS_ENGINE_PARAMETER_SUFFIX);
|
|
if (cisnan(angle)) {
|
|
warning(CUSTOM_ERR_6610, "NaN angle from table");
|
|
return 0;
|
|
}
|
|
angle_t correction = getAdvanceCorrections(rpm PASS_ENGINE_PARAMETER_SUFFIX);
|
|
if (!cisnan(correction)) { // correction could be NaN during settings update
|
|
angle += correction;
|
|
}
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "AngleN3", 0);
|
|
}
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "_AngleN4", 0);
|
|
angle -= engineConfiguration->ignitionOffset;
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "_AngleN5", 0);
|
|
fixAngle(angle, "getAdvance", CUSTOM_ERR_ADCANCE_CALC_ANGLE);
|
|
return angle;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
void setDefaultIatTimingCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
setLinearCurve(config->ignitionIatCorrLoadBins, /*from*/CLT_CURVE_RANGE_FROM, 110, 1);
|
|
#if IGN_LOAD_COUNT == DEFAULT_IGN_LOAD_COUNT
|
|
memcpy(config->ignitionIatCorrRpmBins, iatTimingRpmBins, sizeof(iatTimingRpmBins));
|
|
copyTimingTable(defaultIatTiming, config->ignitionIatCorrTable);
|
|
#else
|
|
setLinearCurve(config->ignitionIatCorrLoadBins, /*from*/0, 6000, 1);
|
|
#endif /* IGN_LOAD_COUNT == DEFAULT_IGN_LOAD_COUNT */
|
|
}
|
|
|
|
void initTimingMap(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
// We init both tables in RAM because here we're at a very early stage, with no config settings loaded.
|
|
advanceMap.init(config->ignitionTable, config->ignitionLoadBins,
|
|
config->ignitionRpmBins);
|
|
advanceTpsMap.init(CONFIG(ignitionTpsTable), CONFIG(ignitionTpsBins),
|
|
config->ignitionRpmBins);
|
|
iatAdvanceCorrectionMap.init(config->ignitionIatCorrTable, config->ignitionIatCorrLoadBins,
|
|
config->ignitionIatCorrRpmBins);
|
|
// init timing PID
|
|
idleTimingPid = Pid(&CONFIG(idleTimingPid));
|
|
}
|
|
|
|
/**
|
|
* @param octane gas octane number
|
|
* @param bore in mm
|
|
*/
|
|
float getTopAdvanceForBore(chamber_style_e style, int octane, double compression, double bore) {
|
|
int octaneCorrection;
|
|
if ( octane <= 90) {
|
|
octaneCorrection = -2;
|
|
} else if (octane < 94) {
|
|
octaneCorrection = -1;
|
|
} else {
|
|
octaneCorrection = 0;
|
|
}
|
|
|
|
int compressionCorrection;
|
|
if (compression <= 9) {
|
|
compressionCorrection = 2;
|
|
} else if (compression <= 10) {
|
|
compressionCorrection = 1;
|
|
} else if (compression <= 11) {
|
|
compressionCorrection = 0;
|
|
} else {
|
|
// compression ratio above 11
|
|
compressionCorrection = -2;
|
|
}
|
|
int base;
|
|
if (style == CS_OPEN) {
|
|
base = 33;
|
|
} else if (style == CS_CLOSED) {
|
|
base = 28;
|
|
} else {
|
|
// CS_SWIRL_TUMBLE
|
|
base = 22;
|
|
}
|
|
|
|
float boreCorrection = (bore - 4 * 25.4) / 25.4 * 6;
|
|
float result = base + octaneCorrection + compressionCorrection + boreCorrection;
|
|
return ((int)(result * 10)) / 10.0;
|
|
}
|
|
|
|
float getAdvanceForRpm(int rpm, float advanceMax) {
|
|
if (rpm >= 3000)
|
|
return advanceMax;
|
|
if (rpm < 600)
|
|
return 10;
|
|
return interpolateMsg("advance", 600, 10, 3000, advanceMax, rpm);
|
|
}
|
|
|
|
#define round10(x) efiRound(x, 0.1)
|
|
|
|
float getInitialAdvance(int rpm, float map, float advanceMax) {
|
|
map = minF(map, 100);
|
|
float advance = getAdvanceForRpm(rpm, advanceMax);
|
|
|
|
if (rpm >= 3000)
|
|
return round10(advance + 0.1 * (100 - map));
|
|
return round10(advance + 0.1 * (100 - map) * rpm / 3000);
|
|
}
|
|
|
|
/**
|
|
* this method builds a good-enough base timing advance map bases on a number of heuristics
|
|
*/
|
|
void buildTimingMap(float advanceMax DECLARE_CONFIG_PARAMETER_SUFFIX) {
|
|
if (engineConfiguration->fuelAlgorithm != LM_SPEED_DENSITY &&
|
|
engineConfiguration->fuelAlgorithm != LM_MAP) {
|
|
warning(CUSTOM_WRONG_ALGORITHM, "wrong algorithm for MAP-based timing");
|
|
return;
|
|
}
|
|
/**
|
|
* good enough (but do not trust us!) default timing map in case of MAP-based engine load
|
|
*/
|
|
for (int loadIndex = 0; loadIndex < IGN_LOAD_COUNT; loadIndex++) {
|
|
float load = config->ignitionLoadBins[loadIndex];
|
|
for (int rpmIndex = 0;rpmIndex<IGN_RPM_COUNT;rpmIndex++) {
|
|
float rpm = config->ignitionRpmBins[rpmIndex];
|
|
config->ignitionTable[loadIndex][rpmIndex] = getInitialAdvance(rpm, load, advanceMax);
|
|
}
|
|
}
|
|
}
|
|
|