rusefi/unit_tests/tests/test_idle_controller.cpp

486 lines
16 KiB
C++

/*
* @file test_idle_controller.cpp
*
* @date Oct 17, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "advance_map.h"
#include "efi_pid.h"
#include "idle_thread.h"
#include "electronic_throttle.h"
using ::testing::StrictMock;
using ::testing::_;
using ICP = IIdleController::Phase;
TEST(idle_v2, timingPid) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
engineConfiguration->useIdleTimingPidControl = true;
engineConfiguration->idleTimingPid.pFactor = 0.1;
engineConfiguration->idleTimingPid.minValue = -10;
engineConfiguration->idleTimingPid.maxValue = 10;
dut.init();
// Check that out of idle mode it doesn't do anything
EXPECT_EQ(0, dut.getIdleTimingAdjustment(1050, 1000, ICP::Cranking));
EXPECT_EQ(0, dut.getIdleTimingAdjustment(1050, 1000, ICP::Coasting));
EXPECT_EQ(0, dut.getIdleTimingAdjustment(1050, 1000, ICP::Running));
// Check that it works in idle mode
EXPECT_FLOAT_EQ(-5, dut.getIdleTimingAdjustment(1050, 1000, ICP::Idling));
// ...but not when disabled
engineConfiguration->useIdleTimingPidControl = false;
EXPECT_EQ(0, dut.getIdleTimingAdjustment(1050, 1000, ICP::Idling));
engineConfiguration->useIdleTimingPidControl = true;
// Now check that the deadzone works
engineConfiguration->idleTimingPidDeadZone = 50;
EXPECT_FLOAT_EQ(5.1, dut.getIdleTimingAdjustment(949, 1000, ICP::Idling));
EXPECT_EQ(0, dut.getIdleTimingAdjustment(951, 1000, ICP::Idling));
EXPECT_EQ(0, dut.getIdleTimingAdjustment(1000, 1000, ICP::Idling));
EXPECT_EQ(0, dut.getIdleTimingAdjustment(1049, 1000, ICP::Idling));
EXPECT_FLOAT_EQ(-5.1, dut.getIdleTimingAdjustment(1051, 1000, ICP::Idling));
}
TEST(idle_v2, testTargetRpm) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
for (size_t i = 0; i < efi::size(config->cltIdleRpmBins); i++) {
config->cltIdleRpmBins[i] = i * 10;
config->cltIdleRpm[i] = i * 100;
}
EXPECT_FLOAT_EQ(100, dut.getTargetRpm(10));
EXPECT_FLOAT_EQ(500, dut.getTargetRpm(50));
}
TEST(idle_v2, testDeterminePhase) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
// TPS threshold 5% for easy test
engineConfiguration->idlePidDeactivationTpsThreshold = 5;
// RPM window is 100 RPM above target
engineConfiguration->idlePidRpmUpperLimit = 100;
// Max VSS for idle is 10kph
engineConfiguration->maxIdleVss = 10;
// First test stopped engine
engine->rpmCalculator.setRpmValue(0);
EXPECT_EQ(ICP::Cranking, dut.determinePhase(0, 1000, unexpected, 0, 10));
// Now engine is running!
// Controller doesn't need this other than for isCranking()
engine->rpmCalculator.setRpmValue(1000);
// Test invalid TPS, but inside the idle window
EXPECT_EQ(ICP::Running, dut.determinePhase(1000, 1000, unexpected, 0, 10));
// Valid TPS should now be inside the zone
EXPECT_EQ(ICP::Idling, dut.determinePhase(1000, 1000, 0, 0, 10));
// Inside the zone, but vehicle speed too fast
EXPECT_EQ(ICP::Running, dut.determinePhase(1000, 1000, 0, 25, 10));
// Check that shortly after cranking, the cranking taper inhibits closed loop idle
EXPECT_EQ(ICP::CrankToIdleTaper, dut.determinePhase(1000, 1000, 0, 0, 0.5f));
// Above TPS threshold should be outside the zone
EXPECT_EQ(ICP::Running, dut.determinePhase(1000, 1000, 10, 0, 10));
// Above target, below (target + upperLimit) should be in idle zone
EXPECT_EQ(ICP::Idling, dut.determinePhase(1099, 1000, 0, 0, 10));
// above upper limit and on throttle should be out of idle zone
EXPECT_EQ(ICP::Running, dut.determinePhase(1101, 1000, 10, 0, 10));
// Below TPS but above RPM should be outside the zone
EXPECT_EQ(ICP::Coasting, dut.determinePhase(1101, 1000, 0, 0, 10));
EXPECT_EQ(ICP::Coasting, dut.determinePhase(5000, 1000, 0, 0, 10));
}
TEST(idle_v2, crankingOpenLoop) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
engineConfiguration->crankingIACposition = 50;
for (size_t i = 0; i < efi::size(config->cltCrankingCorrBins); i++) {
config->cltCrankingCorrBins[i] = i * 10;
config->cltCrankingCorr[i] = i * 0.1f;
// different values in running so we can tell which one is used
config->cltIdleCorrBins[i] = i * 10;
config->cltIdleCorr[i] = i * 0.2f;
}
// First test without override (ie, normal running CLT corr table)
EXPECT_FLOAT_EQ(10, dut.getCrankingOpenLoop(10));
EXPECT_FLOAT_EQ(50, dut.getCrankingOpenLoop(50));
// Test with override (use separate table)
engineConfiguration->overrideCrankingIacSetting = true;
EXPECT_FLOAT_EQ(5, dut.getCrankingOpenLoop(10));
EXPECT_FLOAT_EQ(25, dut.getCrankingOpenLoop(50));
}
TEST(idle_v2, runningOpenLoopBasic) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
engineConfiguration->manIdlePosition = 50;
for (size_t i = 0; i < efi::size(config->cltIdleCorrBins); i++) {
config->cltIdleCorrBins[i] = i * 10;
config->cltIdleCorr[i] = i * 0.1f;
}
EXPECT_FLOAT_EQ(5, dut.getRunningOpenLoop(0, 10, 0));
EXPECT_FLOAT_EQ(25, dut.getRunningOpenLoop(0, 50, 0));
}
TEST(idle_v2, runningFanAcBump) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
engineConfiguration->manIdlePosition = 50;
engineConfiguration->acIdleExtraOffset = 9;
engineConfiguration->fan1ExtraIdle = 7;
engineConfiguration->fan2ExtraIdle = 3;
setArrayValues(config->cltIdleCorr, 1.0f);
// Start with fan off
enginePins.fanRelay.setValue(0);
// Should be base position
EXPECT_FLOAT_EQ(50, dut.getRunningOpenLoop(0, 10, 0));
// Turn on AC!
engine->module<AcController>()->acButtonState = true;
EXPECT_FLOAT_EQ(50 + 9, dut.getRunningOpenLoop(0, 10, 0));
engine->module<AcController>()->acButtonState = false;
// Turn the fan on!
enginePins.fanRelay.setValue(1);
EXPECT_FLOAT_EQ(50 + 7, dut.getRunningOpenLoop(0, 10, 0));
enginePins.fanRelay.setValue(0);
// Turn on the other fan!
enginePins.fanRelay2.setValue(1);
EXPECT_FLOAT_EQ(50 + 3, dut.getRunningOpenLoop(0, 10, 0));
// Turn on everything!
engine->module<AcController>()->acButtonState = true;
enginePins.fanRelay.setValue(1);
enginePins.fanRelay2.setValue(1);
EXPECT_FLOAT_EQ(50 + 9 + 7 + 3, dut.getRunningOpenLoop(0, 10, 0));
}
TEST(idle_v2, runningOpenLoopTpsTaper) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
// Zero out base tempco table
setArrayValues(config->cltIdleCorr, 0.0f);
// Add 50% idle position
engineConfiguration->iacByTpsTaper = 50;
// At 10% TPS
engineConfiguration->idlePidDeactivationTpsThreshold = 10;
// Check in-bounds points
EXPECT_FLOAT_EQ(0, dut.getRunningOpenLoop(0, 0, 0));
EXPECT_FLOAT_EQ(25, dut.getRunningOpenLoop(0, 0, 5));
EXPECT_FLOAT_EQ(50, dut.getRunningOpenLoop(0, 0, 10));
// Check out of bounds - shouldn't leave the interval [0, 10]
EXPECT_FLOAT_EQ(0, dut.getRunningOpenLoop(0, 0, -5));
EXPECT_FLOAT_EQ(50, dut.getRunningOpenLoop(0, 0, 20));
}
TEST(idle_v2, runningOpenLoopRpmTaper) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
// Zero out base tempco table
setArrayValues(config->cltIdleCorr, 0.0f);
// Add 50% idle position
engineConfiguration->airByRpmTaper = 50;
// At 2000 RPM
engineConfiguration->airTaperRpmRange = 500;
engineConfiguration->idlePidRpmUpperLimit = 1500;
// Check in-bounds points
EXPECT_FLOAT_EQ(0, dut.getRunningOpenLoop(1500, 0, 0));
EXPECT_FLOAT_EQ(25, dut.getRunningOpenLoop(1750, 0, 0));
EXPECT_FLOAT_EQ(50, dut.getRunningOpenLoop(2000, 0, 0));
// Check out of bounds - shouldn't leave the interval [1500, 2000]
EXPECT_FLOAT_EQ(0, dut.getRunningOpenLoop(200, 0, 0));
EXPECT_FLOAT_EQ(50, dut.getRunningOpenLoop(3000, 0, 0));
}
struct MockOpenLoopIdler : public IdleController {
MOCK_METHOD(float, getCrankingOpenLoop, (float clt), (const, override));
MOCK_METHOD(float, getRunningOpenLoop, (float rpm, float clt, SensorResult tps), (override));
};
TEST(idle_v2, testOpenLoopCranking) {
EngineTestHelper eth(TEST_ENGINE);
StrictMock<MockOpenLoopIdler> dut;
engineConfiguration->overrideCrankingIacSetting = true;
EXPECT_CALL(dut, getCrankingOpenLoop(30)).WillOnce(Return(44));
// Should return the value from getCrankingOpenLoop, and ignore running numbers
EXPECT_FLOAT_EQ(44, dut.getOpenLoop(ICP::Cranking, 0, 30, 0, 0));
}
TEST(idle_v2, openLoopRunningTaper) {
EngineTestHelper eth(TEST_ENGINE);
StrictMock<MockOpenLoopIdler> dut;
EXPECT_CALL(dut, getRunningOpenLoop(0, 30, SensorResult(0))).WillRepeatedly(Return(25));
EXPECT_CALL(dut, getCrankingOpenLoop(30)).WillRepeatedly(Return(75));
// 0 cycles - no taper yet, pure cranking value
EXPECT_FLOAT_EQ(75, dut.getOpenLoop(ICP::Running, 0, 30, 0, 0));
EXPECT_FLOAT_EQ(75, dut.getOpenLoop(ICP::CrankToIdleTaper, 0, 30, 0, 0));
// 1/2 taper - half way, 50% each value -> outputs 50
EXPECT_FLOAT_EQ(50, dut.getOpenLoop(ICP::Running, 0, 30, 0, 0.5f));
EXPECT_FLOAT_EQ(50, dut.getOpenLoop(ICP::CrankToIdleTaper, 0, 30, 0, 0.5f));
// 1x taper - fully tapered, should be running value
EXPECT_FLOAT_EQ(25, dut.getOpenLoop(ICP::Running, 0, 30, 0, 1.0f));
EXPECT_FLOAT_EQ(25, dut.getOpenLoop(ICP::CrankToIdleTaper, 0, 30, 0, 1.0f));
// 2x taper - still fully tapered, should be running value
EXPECT_FLOAT_EQ(25, dut.getOpenLoop(ICP::Running, 0, 30, 0, 2.0f));
EXPECT_FLOAT_EQ(25, dut.getOpenLoop(ICP::CrankToIdleTaper, 0, 30, 0, 2.0f));
}
TEST(idle_v2, getCrankingTaperFraction) {
EngineTestHelper eth(TEST_ENGINE);
StrictMock<MockOpenLoopIdler> dut;
engineConfiguration->afterCrankingIACtaperDuration = 500;
// 0 cycles - no taper yet, pure cranking value
EXPECT_FLOAT_EQ(0, dut.getCrankingTaperFraction());
// 250 cycles - half way, 50% each value -> outputs 50
for (size_t i = 0; i < 250; i++) {
engine->rpmCalculator.onNewEngineCycle();
}
EXPECT_FLOAT_EQ(0.5f, dut.getCrankingTaperFraction());
// 500 cycles - fully tapered, should be running value
for (size_t i = 0; i < 250; i++) {
engine->rpmCalculator.onNewEngineCycle();
}
EXPECT_FLOAT_EQ(1, dut.getCrankingTaperFraction());
// 1000 cycles - still fully tapered, should be running value
for (size_t i = 0; i < 500; i++) {
engine->rpmCalculator.onNewEngineCycle();
}
EXPECT_FLOAT_EQ(2, dut.getCrankingTaperFraction());
}
TEST(idle_v2, openLoopCoastingTable) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
// enable & configure feature
engineConfiguration->useIacTableForCoasting = true;
for (size_t i = 0; i < CLT_CURVE_SIZE; i++) {
config->iacCoastingRpmBins[i] = 100 * i;
config->iacCoasting[i] = 5 * i;
}
EXPECT_FLOAT_EQ(40, dut.getOpenLoop(ICP::Coasting, 800, 0, 0, 2));
EXPECT_FLOAT_EQ(75, dut.getOpenLoop(ICP::Coasting, 1500, 0, 0, 2));
}
extern int timeNowUs;
TEST(idle_v2, closedLoopBasic) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
dut.init();
// Not testing PID here, so we can set very simple PID gains
engineConfiguration->idleRpmPid.pFactor = 0.5; // 0.5 output per 1 RPM error = 50% per 100 rpm
engineConfiguration->idleRpmPid.iFactor = 0;
engineConfiguration->idleRpmPid.dFactor = 0;
engineConfiguration->idleRpmPid.iFactor = 0;
engineConfiguration->idleRpmPid.periodMs = 0;
engineConfiguration->idleRpmPid.minValue = -50;
engineConfiguration->idleRpmPid.maxValue = 50;
engineConfiguration->idlePidRpmDeadZone = 0;
// burn one update then advance time 5 seconds to avoid difficulty from wasResetPid
dut.getClosedLoop(ICP::Idling, 0, 900, 900);
timeNowUs += 5'000'000;
// Test above target, should return negative
EXPECT_FLOAT_EQ(-25, dut.getClosedLoop(ICP::Idling, 0, /*rpm*/ 950, /*tgt*/ 900));
// Below target, should return positive
EXPECT_FLOAT_EQ(25, dut.getClosedLoop(ICP::Idling, 0, /*rpm*/ 850, /*tgt*/ 900));
}
TEST(idle_v2, closedLoopDeadzone) {
EngineTestHelper eth(TEST_ENGINE);
IdleController dut;
dut.init();
// Not testing PID here, so we can set very simple PID gains
engineConfiguration->idleRpmPid.pFactor = 0.5; // 0.5 output per 1 RPM error = 50% per 100 rpm
engineConfiguration->idleRpmPid.iFactor = 0;
engineConfiguration->idleRpmPid.dFactor = 0;
engineConfiguration->idleRpmPid.iFactor = 0;
engineConfiguration->idleRpmPid.periodMs = 0;
engineConfiguration->idleRpmPid.minValue = -50;
engineConfiguration->idleRpmPid.maxValue = 50;
engineConfiguration->idlePidRpmDeadZone = 25;
// burn one then advance time 5 seconds to avoid difficulty from wasResetPid
dut.getClosedLoop(ICP::Idling, 0, 900, 900);
timeNowUs += 5'000'000;
// Test above target, should return negative
EXPECT_FLOAT_EQ(-25, dut.getClosedLoop(ICP::Idling, 0, /*rpm*/ 950, /*tgt*/ 900));
// Inside deadzone, should return same as last time
EXPECT_FLOAT_EQ(-25, dut.getClosedLoop(ICP::Idling, 0, /*rpm*/ 900, /*tgt*/ 900));
}
struct IntegrationIdleMock : public IdleController {
MOCK_METHOD(int, getTargetRpm, (float clt), (override));
MOCK_METHOD(ICP, determinePhase, (int rpm, int targetRpm, SensorResult tps, float vss, float crankingTaperFraction), (override));
MOCK_METHOD(float, getOpenLoop, (ICP phase, float rpm, float clt, SensorResult tps, float crankingTaperFraction), (override));
MOCK_METHOD(float, getClosedLoop, (ICP phase, float tps, int rpm, int target), (override));
MOCK_METHOD(float, getCrankingTaperFraction, (), (const, override));
};
TEST(idle_v2, IntegrationManual) {
EngineTestHelper eth(TEST_ENGINE);
StrictMock<IntegrationIdleMock> dut;
SensorResult expectedTps = 1;
float expectedClt = 37;
Sensor::setMockValue(SensorType::DriverThrottleIntent, expectedTps.Value);
Sensor::setMockValue(SensorType::Clt, expectedClt);
Sensor::setMockValue(SensorType::VehicleSpeed, 15.0);
// Target of 1000 rpm
EXPECT_CALL(dut, getTargetRpm(expectedClt))
.WillOnce(Return(1000));
// 30% of the way through cranking taper
EXPECT_CALL(dut, getCrankingTaperFraction())
.WillOnce(Return(0.3f));
// Determine phase will claim we're idling
EXPECT_CALL(dut, determinePhase(950, 1000, expectedTps, 15, 0.3f))
.WillOnce(Return(ICP::Idling));
// Open loop should be asked for an open loop position
EXPECT_CALL(dut, getOpenLoop(ICP::Idling, 950, expectedClt, expectedTps, 0.3f))
.WillOnce(Return(13));
// getClosedLoop() should not be called!
EXPECT_EQ(13, dut.getIdlePosition(950));
}
TEST(idle_v2, IntegrationAutomatic) {
EngineTestHelper eth(TEST_ENGINE);
StrictMock<IntegrationIdleMock> dut;
engineConfiguration->idleMode = IM_AUTO;
SensorResult expectedTps = 1;
float expectedClt = 37;
Sensor::setMockValue(SensorType::DriverThrottleIntent, expectedTps.Value);
Sensor::setMockValue(SensorType::Clt, expectedClt);
Sensor::setMockValue(SensorType::VehicleSpeed, 15.0);
// Target of 1000 rpm
EXPECT_CALL(dut, getTargetRpm(expectedClt))
.WillOnce(Return(1000));
// 40% of the way through cranking taper
EXPECT_CALL(dut, getCrankingTaperFraction())
.WillOnce(Return(0.4f));
// Determine phase will claim we're idling
EXPECT_CALL(dut, determinePhase(950, 1000, expectedTps, 15, 0.4f))
.WillOnce(Return(ICP::Idling));
// Open loop should be asked for an open loop position
EXPECT_CALL(dut, getOpenLoop(ICP::Idling, 950, expectedClt, expectedTps, 0.4f))
.WillOnce(Return(13));
// Closed loop should get called
EXPECT_CALL(dut, getClosedLoop(ICP::Idling, expectedTps.Value, 950, 1000))
.WillOnce(Return(7));
// Result should be open + closed
EXPECT_EQ(13 + 7, dut.getIdlePosition(950));
}
TEST(idle_v2, IntegrationClamping) {
EngineTestHelper eth(TEST_ENGINE);
StrictMock<IntegrationIdleMock> dut;
engineConfiguration->idleMode = IM_AUTO;
SensorResult expectedTps = 1;
float expectedClt = 37;
Sensor::setMockValue(SensorType::DriverThrottleIntent, expectedTps.Value);
Sensor::setMockValue(SensorType::Clt, expectedClt);
Sensor::setMockValue(SensorType::VehicleSpeed, 15.0);
// Target of 1000 rpm
EXPECT_CALL(dut, getTargetRpm(expectedClt))
.WillOnce(Return(1000));
// 50% of the way through cranking taper
EXPECT_CALL(dut, getCrankingTaperFraction())
.WillOnce(Return(0.5f));
// Determine phase will claim we're idling
EXPECT_CALL(dut, determinePhase(950, 1000, expectedTps, 15, 0.5f))
.WillOnce(Return(ICP::Idling));
// Open loop should be asked for an open loop position
EXPECT_CALL(dut, getOpenLoop(ICP::Idling, 950, expectedClt, expectedTps, 0.5f))
.WillOnce(Return(75));
// Closed loop should get called
EXPECT_CALL(dut, getClosedLoop(ICP::Idling, expectedTps.Value, 950, 1000))
.WillOnce(Return(75));
// Result would be 75 + 75 = 150, but it should clamp to 100
EXPECT_EQ(100, dut.getIdlePosition(950));
}