605 lines
19 KiB
C++
605 lines
19 KiB
C++
/**
|
|
* @file engine.cpp
|
|
*
|
|
*
|
|
* This might be a http://en.wikipedia.org/wiki/God_object but that's best way I can
|
|
* express myself in C/C++. I am open for suggestions :)
|
|
*
|
|
* @date May 21, 2014
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*/
|
|
|
|
#include "pch.h"
|
|
|
|
#include "trigger_central.h"
|
|
#include "fuel_math.h"
|
|
#include "advance_map.h"
|
|
#include "speed_density.h"
|
|
#include "advance_map.h"
|
|
#include "init.h"
|
|
|
|
#include "aux_valves.h"
|
|
#include "map_averaging.h"
|
|
#include "perf_trace.h"
|
|
#include "backup_ram.h"
|
|
#include "idle_thread.h"
|
|
#include "idle_hardware.h"
|
|
#include "gppwm.h"
|
|
#include "tachometer.h"
|
|
#include "speedometer.h"
|
|
#include "dynoview.h"
|
|
#include "boost_control.h"
|
|
#include "fan_control.h"
|
|
#include "ac_control.h"
|
|
#include "vr_pwm.h"
|
|
#include "max31855.h"
|
|
#if EFI_MC33816
|
|
#include "mc33816.h"
|
|
#endif // EFI_MC33816
|
|
|
|
#include "bench_test.h"
|
|
|
|
#if EFI_PROD_CODE
|
|
#include "trigger_emulator_algo.h"
|
|
#endif /* EFI_PROD_CODE */
|
|
|
|
#if (BOARD_TLE8888_COUNT > 0)
|
|
#include "gpio/tle8888.h"
|
|
#endif
|
|
|
|
#if EFI_ENGINE_SNIFFER
|
|
#include "engine_sniffer.h"
|
|
extern int waveChartUsedSize;
|
|
extern WaveChart waveChart;
|
|
#endif /* EFI_ENGINE_SNIFFER */
|
|
|
|
void Engine::resetEngineSnifferIfInTestMode() {
|
|
#if EFI_ENGINE_SNIFFER
|
|
if (isFunctionalTestMode) {
|
|
// TODO: what is the exact reasoning for the exact engine sniffer pause time I wonder
|
|
waveChart.pauseEngineSnifferUntilNt = getTimeNowNt() + MS2NT(300);
|
|
waveChart.reset();
|
|
}
|
|
#endif /* EFI_ENGINE_SNIFFER */
|
|
}
|
|
|
|
/**
|
|
* VVT decoding delegates to universal trigger decoder. Here we map vvt_mode_e into corresponding trigger_type_e
|
|
*/
|
|
trigger_type_e getVvtTriggerType(vvt_mode_e vvtMode) {
|
|
switch (vvtMode) {
|
|
case VVT_INACTIVE:
|
|
return trigger_type_e::TT_HALF_MOON;
|
|
case VVT_TOYOTA_3_TOOTH:
|
|
return trigger_type_e::TT_VVT_TOYOTA_3_TOOTH;
|
|
case VVT_MIATA_NB:
|
|
return trigger_type_e::TT_VVT_MIATA_NB;
|
|
case VVT_BOSCH_QUICK_START:
|
|
return trigger_type_e::TT_VVT_BOSCH_QUICK_START;
|
|
case VVT_HONDA_K_EXHAUST:
|
|
return trigger_type_e::TT_HONDA_K_CAM_4_1;
|
|
case VVT_HONDA_K_INTAKE:
|
|
case VVT_SINGLE_TOOTH:
|
|
case VVT_MAP_V_TWIN:
|
|
return trigger_type_e::TT_HALF_MOON;
|
|
case VVT_FORD_ST170:
|
|
return trigger_type_e::TT_FORD_ST170;
|
|
case VVT_BARRA_3_PLUS_1:
|
|
return trigger_type_e::TT_VVT_BARRA_3_PLUS_1;
|
|
case VVT_FORD_COYOTE:
|
|
return trigger_type_e::TT_VVT_FORD_COYOTE;
|
|
case VVT_MAZDA_SKYACTIV:
|
|
return trigger_type_e::TT_VVT_MAZDA_SKYACTIV;
|
|
case VVT_NISSAN_VQ:
|
|
return trigger_type_e::TT_VVT_NISSAN_VQ35;
|
|
case VVT_TOYOTA_4_1:
|
|
return trigger_type_e::TT_VVT_TOYOTA_4_1;
|
|
case VVT_MITSUBISHI_4G69:
|
|
return trigger_type_e::TT_VVT_MITSUBISHI_4G69;
|
|
case VVT_MITSUBISHI_3A92:
|
|
return trigger_type_e::TT_VVT_MITSUBISHI_3A92;
|
|
case VVT_MITSUBISHI_6G72:
|
|
return trigger_type_e::TT_VVT_MITSU_6G72;
|
|
case VVT_HONDA_CBR_600:
|
|
return trigger_type_e::TT_HONDA_CBR_600;
|
|
case VVT_MITSUBISHI_6G75:
|
|
case VVT_NISSAN_MR:
|
|
return trigger_type_e::TT_NISSAN_MR18_CAM_VVT;
|
|
case VVT_MITSUBISHI_4G9x:
|
|
return trigger_type_e::TT_MITSU_4G9x_CAM;
|
|
case VVT_MITSUBISHI_4G63:
|
|
return trigger_type_e::TT_MITSU_4G63_CAM;
|
|
default:
|
|
criticalError("Broken VVT mode maybe corrupted calibration %d: %s", vvtMode, getVvt_mode_e(vvtMode));
|
|
return trigger_type_e::TT_HALF_MOON; // we have to return something for the sake of -Werror=return-type
|
|
}
|
|
}
|
|
|
|
void Engine::updateTriggerWaveform() {
|
|
|
|
|
|
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
|
|
// we have a confusing threading model so some synchronization would not hurt
|
|
chibios_rt::CriticalSectionLocker csl;
|
|
|
|
engine->triggerCentral.updateWaveform();
|
|
|
|
|
|
if (!engine->triggerCentral.triggerShape.shapeDefinitionError) {
|
|
prepareOutputSignals();
|
|
}
|
|
#endif /* EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT */
|
|
}
|
|
|
|
#if ANALOG_HW_CHECK_MODE
|
|
static void assertCloseTo(const char* msg, float actual, float expected) {
|
|
if (actual < 0.95f * expected || actual > 1.05f * expected) {
|
|
criticalError("%s validation failed actual=%f vs expected=%f", msg, actual, expected);
|
|
}
|
|
}
|
|
#endif // ANALOG_HW_CHECK_MODE
|
|
|
|
void Engine::periodicSlowCallback() {
|
|
ScopePerf perf(PE::EnginePeriodicSlowCallback);
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
// Re-read config in case it's changed
|
|
triggerCentral.primaryTriggerConfiguration.update();
|
|
for (int camIndex = 0;camIndex < CAMS_PER_BANK;camIndex++) {
|
|
triggerCentral.vvtTriggerConfiguration[camIndex].update();
|
|
}
|
|
|
|
getEngineState()->heaterControlEnabled = engineConfiguration->forceO2Heating || engine->rpmCalculator.isRunning();
|
|
enginePins.o2heater.setValue(getEngineState()->heaterControlEnabled);
|
|
enginePins.starterRelayDisable.setValue(Sensor::getOrZero(SensorType::Rpm) < engineConfiguration->cranking.rpm);
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
|
|
efiWatchdog();
|
|
updateSlowSensors();
|
|
checkShutdown();
|
|
|
|
tpsAccelEnrichment.onNewValue(Sensor::getOrZero(SensorType::Tps1));
|
|
|
|
updateVrThresholdPwm();
|
|
|
|
updateGppwm();
|
|
|
|
engine->engineModules.apply_all([](auto & m) { m.onSlowCallback(); });
|
|
|
|
#if (BOARD_TLE8888_COUNT > 0)
|
|
tle8888startup();
|
|
#endif
|
|
|
|
#if EFI_DYNO_VIEW
|
|
updateDynoView();
|
|
#endif
|
|
|
|
slowCallBackWasInvoked = true;
|
|
|
|
#if EFI_PROD_CODE
|
|
void baroLps25Update();
|
|
baroLps25Update();
|
|
#endif // EFI_PROD_CODE
|
|
|
|
#if ANALOG_HW_CHECK_MODE
|
|
criticalAssertVoid(isAdcChannelValid(engineConfiguration->clt.adcChannel), "No CLT setting");
|
|
efitimesec_t secondsNow = getTimeNowS();
|
|
|
|
#if ! HW_CHECK_ALWAYS_STIMULATE
|
|
fail("HW_CHECK_ALWAYS_STIMULATE required to have self-stimulation")
|
|
#endif
|
|
|
|
int hwCheckRpm = 204;
|
|
if (secondsNow > 2 && secondsNow < 180) {
|
|
assertCloseTo("RPM", Sensor::get(SensorType::Rpm).Value, hwCheckRpm);
|
|
} else if (!hasFirmwareError() && secondsNow > 180) {
|
|
static bool isHappyTest = false;
|
|
if (!isHappyTest) {
|
|
setTriggerEmulatorRPM(5 * hwCheckRpm);
|
|
efiPrintf("TEST PASSED");
|
|
isHappyTest = true;
|
|
}
|
|
}
|
|
|
|
assertCloseTo("clt", Sensor::getRaw(SensorType::Clt), 1.351f);
|
|
assertCloseTo("iat", Sensor::getRaw(SensorType::Iat), 2.245f);
|
|
assertCloseTo("aut1", Sensor::getRaw(SensorType::AuxTemp1), 2.750f);
|
|
assertCloseTo("aut2", Sensor::getRaw(SensorType::AuxTemp2), 3.176f);
|
|
#endif // ANALOG_HW_CHECK_MODE
|
|
}
|
|
|
|
/**
|
|
* We are executing these heavy (logarithm) methods from outside the trigger callbacks for performance reasons.
|
|
* See also periodicFastCallback
|
|
*/
|
|
void Engine::updateSlowSensors() {
|
|
updateSwitchInputs();
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
int rpm = Sensor::getOrZero(SensorType::Rpm);
|
|
triggerCentral.isEngineSnifferEnabled = rpm < engineConfiguration->engineSnifferRpmThreshold;
|
|
getEngineState()->sensorChartMode = rpm < engineConfiguration->sensorSnifferRpmThreshold ? engineConfiguration->sensorChartMode : SC_OFF;
|
|
|
|
engineState.updateSlowSensors();
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
}
|
|
|
|
#if EFI_GPIO_HARDWARE
|
|
static bool getClutchUpState() {
|
|
if (isBrainPinValid(engineConfiguration->clutchUpPin)) {
|
|
return engineConfiguration->clutchUpPinInverted ^ efiReadPin(engineConfiguration->clutchUpPin);
|
|
}
|
|
return engine->engineState.lua.clutchUpState;
|
|
}
|
|
|
|
static bool getBrakePedalState() {
|
|
if (isBrainPinValid(engineConfiguration->brakePedalPin)) {
|
|
return efiReadPin(engineConfiguration->brakePedalPin);
|
|
}
|
|
return engine->engineState.lua.brakePedalState;
|
|
}
|
|
#endif // EFI_GPIO_HARDWARE
|
|
|
|
void Engine::updateSwitchInputs() {
|
|
#if EFI_GPIO_HARDWARE
|
|
// this value is not used yet
|
|
if (isBrainPinValid(engineConfiguration->clutchDownPin)) {
|
|
engine->engineState.clutchDownState = engineConfiguration->clutchDownPinInverted ^ efiReadPin(engineConfiguration->clutchDownPin);
|
|
}
|
|
{
|
|
bool currentState;
|
|
if (hasAcToggle()) {
|
|
currentState = getAcToggle();
|
|
#ifdef EFI_KLINE
|
|
} else if (engineConfiguration->hondaK) {
|
|
extern bool kAcRequestState;
|
|
currentState = kAcRequestState;
|
|
#endif // EFI_KLINE
|
|
} else {
|
|
currentState = engine->engineState.lua.acRequestState;
|
|
}
|
|
AcController & acController = engine->module<AcController>().unmock();
|
|
if (engine->acButtonSwitchedState.update(currentState)) {
|
|
acController.acSwitchLastChangeTimeMs = US2MS(getTimeNowUs());
|
|
}
|
|
}
|
|
engine->clutchUpSwitchedState.update(getClutchUpState());
|
|
|
|
#if EFI_IDLE_CONTROL
|
|
if (isBrainPinValid(engineConfiguration->throttlePedalUpPin)) {
|
|
engine->module<IdleController>().unmock().throttlePedalUpState = efiReadPin(engineConfiguration->throttlePedalUpPin);
|
|
}
|
|
#endif // EFI_IDLE_CONTROL
|
|
|
|
engine->brakePedalSwitchedState.update(getBrakePedalState());
|
|
pokeAuxDigital();
|
|
|
|
#endif // EFI_GPIO_HARDWARE
|
|
}
|
|
|
|
Engine::Engine()
|
|
: clutchUpSwitchedState(&engineState.clutchUpState),
|
|
brakePedalSwitchedState(&engineState.brakePedalState),
|
|
acButtonSwitchedState(&module<AcController>().unmock().acButtonState)
|
|
|
|
#if EFI_LAUNCH_CONTROL
|
|
|
|
, softSparkLimiter(false), hardSparkLimiter(true)
|
|
|
|
#if EFI_ANTILAG_SYSTEM
|
|
, ALSsoftSparkLimiter(false)
|
|
#endif /* EFI_ANTILAG_SYSTEM */
|
|
|
|
#endif // EFI_LAUNCH_CONTROL
|
|
{
|
|
reset();
|
|
}
|
|
|
|
int Engine::getGlobalConfigurationVersion(void) const {
|
|
return globalConfigurationVersion;
|
|
}
|
|
|
|
void Engine::reset() {
|
|
/**
|
|
* it's important for wrapAngle() that engineCycle field never has zero
|
|
*/
|
|
engineState.engineCycle = getEngineCycle(FOUR_STROKE_CRANK_SENSOR);
|
|
resetLua();
|
|
}
|
|
|
|
void Engine::resetLua() {
|
|
// todo: https://github.com/rusefi/rusefi/issues/4308
|
|
engineState.lua = {};
|
|
engineState.lua.fuelAdd = 0;
|
|
engineState.lua.fuelMult = 1;
|
|
engineState.lua.luaDisableEtb = false;
|
|
engineState.lua.luaIgnCut = false;
|
|
#if EFI_BOOST_CONTROL
|
|
module<BoostController>().unmock().resetLua();
|
|
#endif // EFI_BOOST_CONTROL
|
|
ignitionState.luaTimingAdd = 0;
|
|
ignitionState.luaTimingMult = 1;
|
|
#if EFI_IDLE_CONTROL
|
|
module<IdleController>().unmock().luaAdd = 0;
|
|
#endif // EFI_IDLE_CONTROL
|
|
}
|
|
|
|
/**
|
|
* Here we have a bunch of stuff which should invoked after configuration change
|
|
* so that we can prepare some helper structures
|
|
*/
|
|
void Engine::preCalculate() {
|
|
#if EFI_TUNER_STUDIO
|
|
// we take 2 bytes of crc32, no idea if it's right to call it crc16 or not
|
|
// we have a hack here - we rely on the fact that engineMake is the first of three relevant fields
|
|
engine->outputChannels.engineMakeCodeNameCrc16 = crc32(engineConfiguration->engineMake, 3 * VEHICLE_INFO_SIZE);
|
|
|
|
// we need and can empty warning message for CRC purposes
|
|
memset(config->warning_message, 0, sizeof(config->warning_message));
|
|
engine->outputChannels.tuneCrc16 = crc32(config, sizeof(persistent_config_s));
|
|
#endif /* EFI_TUNER_STUDIO */
|
|
}
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
void Engine::OnTriggerStateProperState(efitick_t nowNt) {
|
|
rpmCalculator.setSpinningUp(nowNt);
|
|
}
|
|
|
|
void Engine::OnTriggerSynchronizationLost() {
|
|
// Needed for early instant-RPM detection
|
|
rpmCalculator.setStopSpinning();
|
|
|
|
triggerCentral.triggerState.resetState();
|
|
triggerCentral.instantRpm.resetInstantRpm();
|
|
|
|
for (size_t i = 0; i < efi::size(triggerCentral.vvtState); i++) {
|
|
for (size_t j = 0; j < efi::size(triggerCentral.vvtState[0]); j++) {
|
|
triggerCentral.vvtState[i][j].resetState();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Engine::OnTriggerSynchronization(bool wasSynchronized, bool isDecodingError) {
|
|
// TODO: this logic probably shouldn't be part of engine.cpp
|
|
|
|
// We only care about trigger shape once we have synchronized trigger. Anything could happen
|
|
// during first revolution and it's fine
|
|
if (wasSynchronized) {
|
|
enginePins.triggerDecoderErrorPin.setValue(isDecodingError);
|
|
|
|
// 'triggerStateListener is not null' means we are running a real engine and now just preparing trigger shape
|
|
// that's a bit of a hack, a sweet OOP solution would be a real callback or at least 'needDecodingErrorLogic' method?
|
|
if (isDecodingError) {
|
|
#if EFI_PROD_CODE
|
|
if (engineConfiguration->verboseTriggerSynchDetails || (triggerCentral.triggerState.someSortOfTriggerError() && !engineConfiguration->silentTriggerError)) {
|
|
efiPrintf("error: synchronizationPoint @ index %d expected %d/%d got %d/%d",
|
|
triggerCentral.triggerState.currentCycle.current_index,
|
|
triggerCentral.triggerShape.getExpectedEventCount(TriggerWheel::T_PRIMARY),
|
|
triggerCentral.triggerShape.getExpectedEventCount(TriggerWheel::T_SECONDARY),
|
|
triggerCentral.triggerState.currentCycle.eventCount[0],
|
|
triggerCentral.triggerState.currentCycle.eventCount[1]);
|
|
}
|
|
#endif /* EFI_PROD_CODE */
|
|
}
|
|
|
|
engine->triggerCentral.triggerErrorDetection.add(isDecodingError);
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
void Engine::injectEngineReferences() {
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
triggerCentral.primaryTriggerConfiguration.update();
|
|
for (int camIndex = 0;camIndex < CAMS_PER_BANK;camIndex++) {
|
|
triggerCentral.vvtTriggerConfiguration[camIndex].update();
|
|
}
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
}
|
|
|
|
void Engine::setConfig() {
|
|
efi::clear(config);
|
|
|
|
injectEngineReferences();
|
|
}
|
|
|
|
/**
|
|
* This code asserts that we do not have unexpected gaps in time flow with the exception of internal flash burn.
|
|
*/
|
|
static void assertTimeIsLinear() {
|
|
static efitimems_t mostRecentMs = 0;
|
|
efitimems_t msNow = getTimeNowMs();
|
|
if (engineConfiguration->watchOutForLinearTime && engine->configBurnTimer.hasElapsedSec(5)) {
|
|
|
|
if (mostRecentMs != 0) {
|
|
efitimems_t gapInMs = msNow - mostRecentMs;
|
|
// todo: lower gapInMs threshold?
|
|
if (gapInMs > 200) {
|
|
firmwareError(ObdCode::WATCH_DOG_SECONDS, "gap in time: mostRecentMs %dmS, now=%dmS, gap=%dmS",
|
|
mostRecentMs, msNow, gapInMs);
|
|
}
|
|
}
|
|
}
|
|
mostRecentMs = msNow;
|
|
}
|
|
|
|
void Engine::efiWatchdog() {
|
|
assertTimeIsLinear();
|
|
if (isRunningPwmTest)
|
|
return;
|
|
|
|
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
|
|
if (module<PrimeController>()->isPriming() || triggerCentral.engineMovedRecently()) {
|
|
// do not invoke check in priming or if engine moved recently, no need to assert safe pin state.
|
|
return;
|
|
}
|
|
|
|
if (!triggerCentral.isSpinningJustForWatchdog) {
|
|
if (!isRunningBenchTest() && enginePins.stopPins()) {
|
|
// todo: make this a firmwareError assuming functional tests would run
|
|
warning(ObdCode::CUSTOM_ERR_2ND_WATCHDOG, "Some pins were turned off by 2nd pass watchdog");
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* todo: better watch dog implementation should be implemented - see
|
|
* http://sourceforge.net/p/rusefi/tickets/96/
|
|
*/
|
|
triggerCentral.isSpinningJustForWatchdog = false;
|
|
onEngineHasStopped();
|
|
#endif // EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
|
|
}
|
|
|
|
void Engine::onEngineHasStopped() {
|
|
#if EFI_ENGINE_CONTROL
|
|
ignitionEvents.isReady = false;
|
|
#endif // EFI_ENGINE_CONTROL
|
|
|
|
#if EFI_PROD_CODE || EFI_SIMULATOR
|
|
efiPrintf("Engine has stopped spinning.");
|
|
#endif
|
|
|
|
// this invocation should be the last layer of defence in terms of making sure injectors/coils are not active
|
|
enginePins.stopPins();
|
|
}
|
|
|
|
void Engine::checkShutdown() {
|
|
#if EFI_MAIN_RELAY_CONTROL
|
|
// if we are already in the "ignition_on" mode, then do nothing
|
|
/* this logic is not alive
|
|
if (ignitionOnTimeNt > 0) {
|
|
return;
|
|
}
|
|
todo: move to shutdown_controller.cpp
|
|
*/
|
|
|
|
// here we are in the shutdown (the ignition is off) or initial mode (after the firmware fresh start)
|
|
/* this needs work or tests
|
|
const efitick_t engineStopWaitTimeoutUs = 500000LL; // 0.5 sec
|
|
// in shutdown mode, we need a small cooldown time between the ignition off and on
|
|
todo: move to shutdown_controller.cpp
|
|
if (stopEngineRequestTimeNt == 0 || (getTimeNowNt() - stopEngineRequestTimeNt) > US2NT(engineStopWaitTimeoutUs)) {
|
|
// if the ignition key is turned on again,
|
|
// we cancel the shutdown mode, but only if all shutdown procedures are complete
|
|
const float vBattThresholdOn = 8.0f;
|
|
// we fallback into zero instead of VBAT_FALLBACK_VALUE because it's not safe to false-trigger the "ignition on" event,
|
|
// and we want to turn on the main relay only when 100% sure.
|
|
if ((Sensor::getOrZero(SensorType::BatteryVoltage) > vBattThresholdOn) && !isInShutdownMode()) {
|
|
ignitionOnTimeNt = getTimeNowNt();
|
|
efiPrintf("Ignition voltage detected!");
|
|
if (stopEngineRequestTimeNt != 0) {
|
|
efiPrintf("Cancel the engine shutdown!");
|
|
stopEngineRequestTimeNt = 0;
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
#endif /* EFI_MAIN_RELAY_CONTROL */
|
|
}
|
|
|
|
bool Engine::isInShutdownMode() const {
|
|
// TODO: this logic is currently broken
|
|
#if 0 && EFI_MAIN_RELAY_CONTROL && EFI_PROD_CODE
|
|
// if we are in "ignition_on" mode and not in shutdown mode
|
|
if (stopEngineRequestTimeNt == 0 && ignitionOnTimeNt > 0) {
|
|
const float vBattThresholdOff = 5.0f;
|
|
// start the shutdown process if the ignition voltage dropped low
|
|
if (Sensor::get(SensorType::BatteryVoltage).value_or(VBAT_FALLBACK_VALUE) <= vBattThresholdOff) {
|
|
scheduleStopEngine();
|
|
}
|
|
}
|
|
|
|
// we are not in the shutdown mode?
|
|
if (stopEngineRequestTimeNt == 0) {
|
|
return false;
|
|
}
|
|
|
|
const efitick_t turnOffWaitTimeoutNt = NT_PER_SECOND;
|
|
// We don't want any transients to step in, so we wait at least 1 second whatever happens.
|
|
// Also it's good to give the stepper motor some time to start moving to the initial position (or parking)
|
|
if ((getTimeNowNt() - stopEngineRequestTimeNt) < turnOffWaitTimeoutNt)
|
|
return true;
|
|
|
|
const efitick_t engineSpinningWaitTimeoutNt = 5 * NT_PER_SECOND;
|
|
// The engine is still spinning! Give it some time to stop (but wait no more than 5 secs)
|
|
if (isSpinning && (getTimeNowNt() - stopEngineRequestTimeNt) < engineSpinningWaitTimeoutNt)
|
|
return true;
|
|
|
|
// The idle motor valve is still moving! Give it some time to park (but wait no more than 10 secs)
|
|
// Usually it can move to the initial 'cranking' position or zero 'parking' position.
|
|
const efitick_t idleMotorWaitTimeoutNt = 10 * NT_PER_SECOND;
|
|
if (isIdleMotorBusy() && (getTimeNowNt() - stopEngineRequestTimeNt) < idleMotorWaitTimeoutNt)
|
|
return true;
|
|
#endif /* EFI_MAIN_RELAY_CONTROL */
|
|
return false;
|
|
}
|
|
|
|
bool Engine::isMainRelayEnabled() const {
|
|
#if EFI_MAIN_RELAY_CONTROL
|
|
return enginePins.mainRelay.getLogicValue();
|
|
#else
|
|
// if no main relay control, we assume it's always turned on
|
|
return true;
|
|
#endif /* EFI_MAIN_RELAY_CONTROL */
|
|
}
|
|
|
|
injection_mode_e getCurrentInjectionMode() {
|
|
return getEngineRotationState()->isCranking() ? engineConfiguration->crankingInjectionMode : engineConfiguration->injectionMode;
|
|
}
|
|
|
|
/**
|
|
* The idea of this method is to execute all heavy calculations in a lower-priority thread,
|
|
* so that trigger event handler/IO scheduler tasks are faster.
|
|
*/
|
|
void Engine::periodicFastCallback() {
|
|
ScopePerf pc(PE::EnginePeriodicFastCallback);
|
|
|
|
#if EFI_MAP_AVERAGING
|
|
refreshMapAveragingPreCalc();
|
|
#endif
|
|
|
|
engineState.periodicFastCallback();
|
|
|
|
tachUpdate();
|
|
speedoUpdate();
|
|
|
|
engine->engineModules.apply_all([](auto & m) { m.onFastCallback(); });
|
|
}
|
|
|
|
EngineRotationState * getEngineRotationState() {
|
|
return &engine->rpmCalculator;
|
|
}
|
|
|
|
EngineState * getEngineState() {
|
|
return &engine->engineState;
|
|
}
|
|
|
|
TunerStudioOutputChannels *getTunerStudioOutputChannels() {
|
|
return &engine->outputChannels;
|
|
}
|
|
|
|
ExecutorInterface *getExecutorInterface() {
|
|
return &engine->executor;
|
|
}
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
TriggerCentral * getTriggerCentral() {
|
|
return &engine->triggerCentral;
|
|
}
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
|
|
#if EFI_ENGINE_CONTROL
|
|
LimpManager * getLimpManager() {
|
|
return &engine->module<LimpManager>().unmock();
|
|
}
|
|
|
|
FuelSchedule *getFuelSchedule() {
|
|
return &engine->injectionEvents;
|
|
}
|
|
|
|
IgnitionEventList *getIgnitionEvents() {
|
|
return &engine->ignitionEvents;
|
|
}
|
|
#endif // EFI_ENGINE_CONTROL
|