412 lines
12 KiB
C++
412 lines
12 KiB
C++
/**
|
|
* @file rpm_calculator.cpp
|
|
* @brief RPM calculator
|
|
*
|
|
* Here we listen to position sensor events in order to figure our if engine is currently running or not.
|
|
* Actual getRpm() is calculated once per crankshaft revolution, based on the amount of time passed
|
|
* since the start of previous shaft revolution.
|
|
*
|
|
* We also have 'instant RPM' logic separate from this 'cycle RPM' logic. Open question is why do we not use
|
|
* instant RPM instead of cycle RPM more often.
|
|
*
|
|
* @date Jan 1, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*/
|
|
|
|
#include "pch.h"
|
|
|
|
#include "trigger_central.h"
|
|
|
|
#if EFI_SENSOR_CHART
|
|
#include "sensor_chart.h"
|
|
#endif // EFI_SENSOR_CHART
|
|
|
|
#include "engine_sniffer.h"
|
|
|
|
// See RpmCalculator::checkIfSpinning()
|
|
#ifndef NO_RPM_EVENTS_TIMEOUT_SECS
|
|
#define NO_RPM_EVENTS_TIMEOUT_SECS 2
|
|
#endif /* NO_RPM_EVENTS_TIMEOUT_SECS */
|
|
|
|
float RpmCalculator::getRpmAcceleration() const {
|
|
return rpmRate;
|
|
}
|
|
|
|
bool RpmCalculator::isStopped() const {
|
|
// Spinning-up with zero RPM means that the engine is not ready yet, and is treated as 'stopped'.
|
|
return state == STOPPED || (state == SPINNING_UP && cachedRpmValue == 0);
|
|
}
|
|
|
|
bool RpmCalculator::isCranking() const {
|
|
// Spinning-up with non-zero RPM is suitable for all engine math, as good as cranking
|
|
return state == CRANKING || (state == SPINNING_UP && cachedRpmValue > 0);
|
|
}
|
|
|
|
bool RpmCalculator::isSpinningUp() const {
|
|
return state == SPINNING_UP;
|
|
}
|
|
|
|
uint32_t RpmCalculator::getRevolutionCounterSinceStart(void) const {
|
|
return revolutionCounterSinceStart;
|
|
}
|
|
|
|
/**
|
|
* @return -1 in case of isNoisySignal(), current RPM otherwise
|
|
* See NOISY_RPM
|
|
*/
|
|
float RpmCalculator::getCachedRpm() const {
|
|
return cachedRpmValue;
|
|
}
|
|
|
|
operation_mode_e lookupOperationMode() {
|
|
if (engineConfiguration->twoStroke) {
|
|
return TWO_STROKE;
|
|
} else {
|
|
return engineConfiguration->skippedWheelOnCam ? FOUR_STROKE_CAM_SENSOR : FOUR_STROKE_CRANK_SENSOR;
|
|
}
|
|
}
|
|
|
|
// see also in TunerStudio project '[doesTriggerImplyOperationMode] tag
|
|
// this is related to 'knownOperationMode' flag
|
|
static bool doesTriggerImplyOperationMode(trigger_type_e type) {
|
|
switch (type) {
|
|
case trigger_type_e::TT_TOOTHED_WHEEL:
|
|
case trigger_type_e::TT_HALF_MOON:
|
|
case trigger_type_e::TT_3_1_CAM: // huh why is this trigger with CAM suffix right in the name on this exception list?!
|
|
case trigger_type_e::TT_36_2_2_2: // this trigger is special due to rotary application https://github.com/rusefi/rusefi/issues/5566
|
|
case trigger_type_e::TT_TOOTHED_WHEEL_60_2:
|
|
case trigger_type_e::TT_TOOTHED_WHEEL_36_1:
|
|
// These modes could be either cam or crank speed
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// todo: move to triggerCentral/triggerShape since has nothing to do with rotation state!
|
|
operation_mode_e RpmCalculator::getOperationMode() const {
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
// Ignore user-provided setting for well known triggers.
|
|
if (doesTriggerImplyOperationMode(engineConfiguration->trigger.type)) {
|
|
// For example for Miata NA, there is no reason to allow user to set FOUR_STROKE_CRANK_SENSOR
|
|
return engine->triggerCentral.triggerShape.getWheelOperationMode();
|
|
} else
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
{
|
|
// For example 36-1, could be on either cam or crank, so we have to ask the user
|
|
return lookupOperationMode();
|
|
}
|
|
}
|
|
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
|
|
RpmCalculator::RpmCalculator() :
|
|
StoredValueSensor(SensorType::Rpm, 0)
|
|
{
|
|
assignRpmValue(0);
|
|
}
|
|
|
|
/**
|
|
* @return true if there was a full shaft revolution within the last second
|
|
*/
|
|
bool RpmCalculator::isRunning() const {
|
|
return state == RUNNING;
|
|
}
|
|
|
|
/**
|
|
* @return true if engine is spinning (cranking or running)
|
|
*/
|
|
bool RpmCalculator::checkIfSpinning(efitick_t nowNt) const {
|
|
if (getLimpManager()->shutdownController.isEngineStop(nowNt)) {
|
|
return false;
|
|
}
|
|
|
|
// Anything below 60 rpm is not running
|
|
bool noRpmEventsForTooLong = lastTdcTimer.getElapsedSeconds(nowNt) > NO_RPM_EVENTS_TIMEOUT_SECS;
|
|
|
|
/**
|
|
* Also check if there were no trigger events
|
|
*/
|
|
bool noTriggerEventsForTooLong = !engine->triggerCentral.engineMovedRecently(nowNt);
|
|
|
|
if (noRpmEventsForTooLong || noTriggerEventsForTooLong) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void RpmCalculator::assignRpmValue(float floatRpmValue) {
|
|
previousRpmValue = cachedRpmValue;
|
|
|
|
cachedRpmValue = floatRpmValue;
|
|
|
|
setValidValue(floatRpmValue, 0); // 0 for current time since RPM sensor never times out
|
|
if (cachedRpmValue <= 0) {
|
|
oneDegreeUs = NAN;
|
|
} else {
|
|
// here it's really important to have more precise float RPM value, see #796
|
|
oneDegreeUs = getOneDegreeTimeUs(floatRpmValue);
|
|
if (previousRpmValue == 0) {
|
|
/**
|
|
* this would make sure that we have good numbers for first cranking revolution
|
|
* #275 cranking could be improved
|
|
*/
|
|
engine->periodicFastCallback();
|
|
}
|
|
}
|
|
}
|
|
|
|
void RpmCalculator::setRpmValue(float value) {
|
|
assignRpmValue(value);
|
|
spinning_state_e oldState = state;
|
|
// Change state
|
|
if (cachedRpmValue == 0) {
|
|
state = STOPPED;
|
|
} else if (cachedRpmValue >= engineConfiguration->cranking.rpm) {
|
|
if (state != RUNNING) {
|
|
// Store the time the engine started
|
|
engineStartTimer.reset();
|
|
}
|
|
|
|
state = RUNNING;
|
|
} else if (state == STOPPED || state == SPINNING_UP) {
|
|
/**
|
|
* We are here if RPM is above zero but we have not seen running RPM yet.
|
|
* This gives us cranking hysteresis - a drop of RPM during running is still running, not cranking.
|
|
*/
|
|
state = CRANKING;
|
|
}
|
|
#if EFI_ENGINE_CONTROL
|
|
// This presumably fixes injection mode change for cranking-to-running transition.
|
|
// 'isSimultaneous' flag should be updated for events if injection modes differ for cranking and running.
|
|
if (state != oldState && engineConfiguration->crankingInjectionMode != engineConfiguration->injectionMode) {
|
|
// Reset the state of all injectors: when we change fueling modes, we could
|
|
// immediately reschedule an injection that's currently underway. That will cause
|
|
// the injector's overlappingCounter to get out of sync with reality. As the fix,
|
|
// every injector's state is forcibly reset just before we could cause that to happen.
|
|
engine->injectionEvents.resetOverlapping();
|
|
|
|
// reschedule all injection events now that we've reset them
|
|
engine->injectionEvents.addFuelEvents();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
spinning_state_e RpmCalculator::getState() const {
|
|
return state;
|
|
}
|
|
|
|
void RpmCalculator::onNewEngineCycle() {
|
|
revolutionCounterSinceBoot++;
|
|
revolutionCounterSinceStart++;
|
|
}
|
|
|
|
uint32_t RpmCalculator::getRevolutionCounterM(void) const {
|
|
return revolutionCounterSinceBoot;
|
|
}
|
|
|
|
void RpmCalculator::onSlowCallback() {
|
|
// Stop the engine if it's been too long since we got a trigger event
|
|
if (!engine->triggerCentral.engineMovedRecently(getTimeNowNt())) {
|
|
setStopSpinning();
|
|
}
|
|
}
|
|
|
|
void RpmCalculator::setStopped() {
|
|
revolutionCounterSinceStart = 0;
|
|
|
|
rpmRate = 0;
|
|
|
|
if (cachedRpmValue != 0) {
|
|
assignRpmValue(0);
|
|
// needed by 'useNoiselessTriggerDecoder'
|
|
engine->triggerCentral.noiseFilter.resetAccumSignalData();
|
|
efiPrintf("engine stopped");
|
|
}
|
|
state = STOPPED;
|
|
}
|
|
|
|
void RpmCalculator::setStopSpinning() {
|
|
isSpinning = false;
|
|
setStopped();
|
|
}
|
|
|
|
void RpmCalculator::setSpinningUp(efitick_t nowNt) {
|
|
if (!engineConfiguration->isFasterEngineSpinUpEnabled)
|
|
return;
|
|
// Only a completely stopped and non-spinning engine can enter the spinning-up state.
|
|
if (isStopped() && !isSpinning) {
|
|
state = SPINNING_UP;
|
|
engine->triggerCentral.instantRpm.spinningEventIndex = 0;
|
|
isSpinning = true;
|
|
}
|
|
// update variables needed by early instant RPM calc.
|
|
if (isSpinningUp() && !engine->triggerCentral.triggerState.getShaftSynchronized()) {
|
|
engine->triggerCentral.instantRpm.setLastEventTimeForInstantRpm(nowNt);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Shaft position callback used by RPM calculation logic.
|
|
*
|
|
* This callback should always be the first of trigger callbacks because other callbacks depend of values
|
|
* updated here.
|
|
* This callback is invoked on interrupt thread.
|
|
*/
|
|
void rpmShaftPositionCallback(trigger_event_e ckpSignalType,
|
|
uint32_t trgEventIndex, efitick_t nowNt) {
|
|
|
|
bool alwaysInstantRpm = engineConfiguration->alwaysInstantRpm;
|
|
|
|
RpmCalculator *rpmState = &engine->rpmCalculator;
|
|
|
|
if (trgEventIndex == 0) {
|
|
if (HAVE_CAM_INPUT()) {
|
|
engine->triggerCentral.validateCamVvtCounters();
|
|
}
|
|
|
|
|
|
bool hadRpmRecently = rpmState->checkIfSpinning(nowNt);
|
|
|
|
float periodSeconds = engine->rpmCalculator.lastTdcTimer.getElapsedSecondsAndReset(nowNt);
|
|
|
|
if (hadRpmRecently) {
|
|
/**
|
|
* Four stroke cycle is two crankshaft revolutions
|
|
*
|
|
* We always do '* 2' because the event signal is already adjusted to 'per engine cycle'
|
|
* and each revolution of crankshaft consists of two engine cycles revolutions
|
|
*
|
|
*/
|
|
if (!alwaysInstantRpm) {
|
|
if (periodSeconds == 0) {
|
|
rpmState->setRpmValue(NOISY_RPM);
|
|
rpmState->rpmRate = 0;
|
|
} else {
|
|
int mult = (int)getEngineCycle(getEngineRotationState()->getOperationMode()) / 360;
|
|
float rpm = 60 * mult / periodSeconds;
|
|
|
|
auto rpmDelta = rpm - rpmState->previousRpmValue;
|
|
rpmState->rpmRate = rpmDelta / (mult * periodSeconds);
|
|
|
|
rpmState->setRpmValue(rpm > UNREALISTIC_RPM ? NOISY_RPM : rpm);
|
|
}
|
|
}
|
|
} else {
|
|
// we are here only once trigger is synchronized for the first time
|
|
// while transitioning from 'spinning' to 'running'
|
|
engine->triggerCentral.instantRpm.movePreSynchTimestamps();
|
|
}
|
|
|
|
rpmState->onNewEngineCycle();
|
|
}
|
|
|
|
#if EFI_SENSOR_CHART
|
|
// this 'index==0' case is here so that it happens after cycle callback so
|
|
// it goes into sniffer report into the first position
|
|
if (getEngineState()->sensorChartMode == SC_TRIGGER) {
|
|
angle_t crankAngle = engine->triggerCentral.getCurrentEnginePhase(nowNt).value_or(0);
|
|
int signal = 1000 * ckpSignalType + trgEventIndex;
|
|
scAddData(crankAngle, signal);
|
|
}
|
|
#endif /* EFI_SENSOR_CHART */
|
|
|
|
// Always update instant RPM even when not spinning up
|
|
engine->triggerCentral.instantRpm.updateInstantRpm(
|
|
engine->triggerCentral.triggerState.currentCycle.current_index,
|
|
|
|
engine->triggerCentral.triggerShape, &engine->triggerCentral.triggerFormDetails,
|
|
trgEventIndex, nowNt);
|
|
|
|
float instantRpm = engine->triggerCentral.instantRpm.getInstantRpm();
|
|
if (alwaysInstantRpm) {
|
|
rpmState->setRpmValue(instantRpm);
|
|
} else if (rpmState->isSpinningUp()) {
|
|
rpmState->assignRpmValue(instantRpm);
|
|
#if 0
|
|
efiPrintf("** RPM: idx=%d sig=%d iRPM=%d", trgEventIndex, ckpSignalType, instantRpm);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
float RpmCalculator::getSecondsSinceEngineStart(efitick_t nowNt) const {
|
|
return engineStartTimer.getElapsedSeconds(nowNt);
|
|
}
|
|
|
|
|
|
/**
|
|
* This callback has nothing to do with actual engine control, it just sends a Top Dead Center mark to the rusEfi console
|
|
* digital sniffer.
|
|
*/
|
|
static void onTdcCallback(void *) {
|
|
#if EFI_UNIT_TEST
|
|
if (!engine->needTdcCallback) {
|
|
return;
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
int rpm = Sensor::getOrZero(SensorType::Rpm);
|
|
addEngineSnifferTdcEvent(rpm);
|
|
#if EFI_TOOTH_LOGGER
|
|
LogTriggerTopDeadCenter(getTimeNowNt());
|
|
#endif /* EFI_TOOTH_LOGGER */
|
|
}
|
|
|
|
/**
|
|
* This trigger callback schedules the actual physical TDC callback in relation to trigger synchronization point.
|
|
*/
|
|
void tdcMarkCallback(
|
|
uint32_t trgEventIndex, efitick_t edgeTimestamp) {
|
|
bool isTriggerSynchronizationPoint = trgEventIndex == 0;
|
|
if (isTriggerSynchronizationPoint && getTriggerCentral()->isEngineSnifferEnabled) {
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (!engine->tdcMarkEnabled) {
|
|
return;
|
|
}
|
|
#endif // EFI_UNIT_TEST
|
|
|
|
|
|
// two instances of scheduling_s are needed to properly handle event overlap
|
|
int revIndex2 = getRevolutionCounter() % 2;
|
|
int rpm = Sensor::getOrZero(SensorType::Rpm);
|
|
// todo: use tooth event-based scheduling, not just time-based scheduling
|
|
if (isValidRpm(rpm)) {
|
|
angle_t tdcPosition = tdcPosition();
|
|
// we need a positive angle offset here
|
|
fixAngle(tdcPosition, "tdcPosition", ObdCode::CUSTOM_ERR_6553);
|
|
scheduleByAngle(&engine->tdcScheduler[revIndex2], edgeTimestamp, tdcPosition, onTdcCallback);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Schedules a callback 'angle' degree of crankshaft from now.
|
|
* The callback would be executed once after the duration of time which
|
|
* it takes the crankshaft to rotate to the specified angle.
|
|
*/
|
|
efitick_t scheduleByAngle(scheduling_s *timer, efitick_t edgeTimestamp, angle_t angle,
|
|
action_s action) {
|
|
float delayUs = engine->rpmCalculator.oneDegreeUs * angle;
|
|
|
|
// 'delayNt' is below 10 seconds here so we use 32 bit type for performance reasons
|
|
int32_t delayNt = USF2NT(delayUs);
|
|
efitick_t delayedTime = edgeTimestamp + delayNt;
|
|
|
|
engine->executor.scheduleByTimestampNt("angle", timer, delayedTime, action);
|
|
|
|
return delayedTime;
|
|
}
|
|
|
|
#else
|
|
RpmCalculator::RpmCalculator() :
|
|
StoredValueSensor(SensorType::Rpm, 0)
|
|
{
|
|
|
|
}
|
|
|
|
#endif /* EFI_SHAFT_POSITION_INPUT */
|
|
|