rusefi/firmware/controllers/algo/rusefi_enums.h

701 lines
14 KiB
C++

/**
* @file rusefi_enums.h
* @brief Fundamental rusEFI enumerable types live here
*
* This and few over headers are part of integration API between C/C++ and code generator for memory meta and java code.
* TODO: move enums which should not be visible outside of the firmware out of 'integration API' headers like this one
*
* @note this file should probably not include any other files
*
* @date Jan 14, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
#include "efifeatures.h"
#include "obd_error_codes.h"
#include "live_data_ids.h"
#include "engine_types.h"
// we do not want to start the search for header from current folder so we use brackets here
// https://stackoverflow.com/questions/21593/what-is-the-difference-between-include-filename-and-include-filename
#include <rusefi_hw_enums.h>
#define PERCENT_MULT 100.0f
#define PERCENT_DIV 0.01f
/* diagnostic for brain pins
* can be combination of few bits
* defined as bit mask */
typedef enum __attribute__ ((__packed__))
{
PIN_OK = 0,
PIN_OPEN = 0x01,
PIN_SHORT_TO_GND = 0x02,
PIN_SHORT_TO_BAT = 0x04,
PIN_OVERLOAD = 0x08,
PIN_DRIVER_OVERTEMP = 0x10,
PIN_DRIVER_OFF = 0x20,
PIN_INVALID = 0x80
} brain_pin_diag_e;
// see also PWM_PHASE_MAX_WAVE_PER_PWM
// todo: better names?
enum class TriggerWheel : uint8_t {
T_PRIMARY = 0,
T_SECONDARY = 1,
};
typedef enum __attribute__ ((__packed__)) {
/**
* This mode is useful for troubleshooting and research - events are logged but no effects on phase synchronization
*/
VVT_INACTIVE = 0,
/**
* Single-tooth cam sensor mode where TDC and cam signal happen in opposite 360 degree of 720 degree engine cycle
*/
VVT_SECOND_HALF = 1,
/**
* Toyota 2JZ has three cam tooth. We pick one of these three tooth to synchronize based on the expected angle position of the event
*/
VVT_2JZ = 2,
/**
* Mazda NB2 has three cam tooth. We synchronize based on gap ratio.
* @see TT_VVT_MIATA_NB
*/
VVT_MIATA_NB = 3,
/**
* Single-tooth cam sensor mode where TDC and cam signal happen in the same 360 degree of 720 degree engine cycle
*/
VVT_FIRST_HALF = 4,
/**
* @see TT_VVT_BOSCH_QUICK_START
*/
VVT_BOSCH_QUICK_START = 5,
/**
* 1.8l Toyota 1ZZ-FE https://rusefi.com/forum/viewtopic.php?f=3&t=1735
* 4 minus one
*/
VVT_TOYOTA_4_1 = 6,
VVT_FORD_ST170 = 7,
VVT_BARRA_3_PLUS_1 = 8,
VVT_NISSAN_VQ = 9,
/**
* 4 equally spaced no way to sync
*/
VVT_HONDA_K_INTAKE = 10,
VVT_NISSAN_MR = 11,
VVT_MITSUBISHI_3A92 = 12,
VVT_MAP_V_TWIN = 13,
VVT_MITSUBISHI_6G75 = 14,
VVT_MAZDA_SKYACTIV = 15,
/**
* 4 plus one
*/
VVT_HONDA_K_EXHAUST = 16,
VVT_MITSUBISHI_4G9x = 17,
VVT_MITSUBISHI_4G63 = 18,
} vvt_mode_e;
/**
* This enum is used to select your desired Engine Load calculation algorithm
*/
typedef enum __attribute__ ((__packed__)) {
/**
* Speed Density algorithm - Engine Load is a function of MAP, VE and target AFR
* http://articles.sae.org/8539/
*/
LM_SPEED_DENSITY = 0,
/**
* MAF with a known kg/hour function
*/
LM_REAL_MAF = 1,
LM_ALPHA_N = 2,
LM_LUA = 3,
// This mode is for unit testing only, so that tests don't have to rely on a particular real airmass mode
LM_MOCK = 100,
} engine_load_mode_e;
typedef enum __attribute__ ((__packed__)) {
DM_NONE = 0,
DM_HD44780 = 1,
DM_HD44780_OVER_PCF8574 = 2,
} display_mode_e;
typedef enum __attribute__ ((__packed__)) {
TL_AUTO = 0,
TL_SEMI_AUTO = 1,
TL_MANUAL = 2,
TL_HALL = 3,
} tle8888_mode_e;
typedef enum __attribute__ ((__packed__)) {
/**
* In auto mode we currently have some pid-like-but-not really PID logic which is trying
* to get idle RPM to desired value by dynamically adjusting idle valve position.
* TODO: convert to PID
*/
IM_AUTO = 0,
/**
* Manual idle control is extremely simple: user just specifies desired idle valve position
* which could be adjusted according to current CLT
*/
IM_MANUAL = 1,
} idle_mode_e;
enum class SentEtbType : uint8_t {
NONE = 0,
GM_TYPE_1 = 1,
FORD_TYPE_1 = 2,
};
typedef enum __attribute__ ((__packed__)) {
/**
* GND for logical OFF, VCC for logical ON
*/
OM_DEFAULT = 0,
/**
* GND for logical ON, VCC for logical OFF
*/
OM_INVERTED = 1,
/**
* logical OFF is floating, logical ON is GND
*/
OM_OPENDRAIN = 2,
OM_OPENDRAIN_INVERTED = 3
} pin_output_mode_e;
typedef enum __attribute__ ((__packed__)) {
PI_DEFAULT = 0,
PI_PULLUP = 1,
PI_PULLDOWN = 2
} pin_input_mode_e;
#define CRANK_MODE_MULTIPLIER 2.0f
/**
* @see getCycleDuration
* @see getEngineCycle
*/
// todo: better enum name
typedef enum {
OM_NONE = 0,
/**
* 720 degree engine cycle but trigger is defined using a 360 cycle which is when repeated.
* For historical reasons we have a pretty weird approach where one crank trigger revolution is
* defined as if it's stretched to 720 degress. See CRANK_MODE_MULTIPLIER
*/
FOUR_STROKE_CRANK_SENSOR = 1,
/**
* 720 degree engine and trigger cycle
*/
FOUR_STROKE_CAM_SENSOR = 2,
/**
* 360 degree cycle
*/
TWO_STROKE = 3,
/**
* 720 degree engine cycle but trigger is defined using a 180 cycle which is when repeated three more times
* In other words, same pattern is repeated on the crank wheel twice.
*/
FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR = 4,
/**
* Same pattern repeated three times on crank wheel. Crazy, I know!
*/
FOUR_STROKE_THREE_TIMES_CRANK_SENSOR = 5,
// Same pattern TWELVE TIMES on the crank wheel!
// This usually means Honda, which often has a 12 tooth crank wheel or 24 tooth cam wheel
// without a missing tooth, plus a single tooth cam channel to resolve the engine phase.
FOUR_STROKE_TWELVE_TIMES_CRANK_SENSOR = 6,
} operation_mode_e;
/**
* @brief Ignition Mode
*/
typedef enum __attribute__ ((__packed__)) {
/**
* in this mode only SPARKOUT_1_OUTPUT is used
*/
IM_ONE_COIL = 0,
/**
* in this mode we use as many coils as we have cylinders
*/
IM_INDIVIDUAL_COILS = 1,
IM_WASTED_SPARK = 2,
/**
* some v12 engines line BMW M70 and M73 run two distributors, one for each bank of cylinders
*/
IM_TWO_COILS = 3,
} ignition_mode_e;
/**
* @see getNumberOfInjections
*/
typedef enum __attribute__ ((__packed__)) {
/**
* each cylinder has it's own injector but they all works in parallel
*/
IM_SIMULTANEOUS = 0,
/**
* each cylinder has it's own injector, each injector is wired separately
*/
IM_SEQUENTIAL = 1,
/**
* each cylinder has it's own injector but these injectors work in pairs. Injectors could be wired in pairs or separately.
* Each pair is fired once per engine cycle
* todo: we might want to implement one additional mode where each pair of injectors is floating twice per engine cycle.
* todo: this could reduce phase offset from injection to stroke but would not work great for large injectors
*/
IM_BATCH = 2,
/**
* only one injector located in throttle body
*/
IM_SINGLE_POINT = 3,
} injection_mode_e;
typedef enum __attribute__ ((__packed__)) {
UART_NONE = 0,
UART_DEVICE_1 = 1,
UART_DEVICE_2 = 2,
UART_DEVICE_3 = 3,
UART_DEVICE_4 = 4,
} uart_device_e;
typedef enum __attribute__ ((__packed__)) {
_5MHz,
_2_5MHz,
_1_25MHz,
_150KHz
} spi_speed_e;
/**
* See spi3mosiPin
* See spi2MisoMode
*/
typedef enum __attribute__ ((__packed__)) {
SPI_NONE = 0,
SPI_DEVICE_1 = 1,
SPI_DEVICE_2 = 2,
SPI_DEVICE_3 = 3,
SPI_DEVICE_4 = 4,
} spi_device_e;
typedef enum __attribute__ ((__packed__)) {
BMW_e46 = 0,
W202 = 1,
} can_vss_nbc_e;
/**
* inertia measurement unit, yawn accelerometer
* By the way both kinds of BOSCH use Housing : TE 1-967640-1, pins 144969-1 seal 967056-1 plug 967067-2
*/
typedef enum __attribute__ ((__packed__)) {
IMU_NONE = 0,
IMU_VAG = 1,
/**
* f037000002
* https://github.com/rusefi/rusefi_documentation/blob/master/OEM-Docs/Bosch/Data%20Sheet_68903691_Acceleration_Sensor_MM5.10.pdf
*/
IMU_MM5_10 = 2,
IMU_TYPE_3 = 3,
IMU_TYPE_4 = 4,
/**
* Mercedes pn: A 006 542 26 18
* Almost the same as BOSCH above, but XY only and different CAN IDs
*/
IMU_TYPE_MB_A0065422618 = 5,
} imu_type_e;
typedef enum __attribute__ ((__packed__)) {
ES_BPSX_D1 = 0,
/**
* same as innovate LC2
* 0v->7.35afr, 5v->22.39
*/
ES_Innovate_MTX_L = 1,
/**
* Same as AEM
* 0v->10.0afr
* 5v->20.0afr
*/
ES_14Point7_Free = 2,
ES_NarrowBand = 3,
ES_PLX = 4,
ES_Custom = 5,
ES_AEM = 6,
} ego_sensor_e;
typedef enum __attribute__ ((__packed__)) {
MT_CUSTOM = 0,
MT_DENSO183 = 1,
/**
* 20 to 250 kPa (2.9 to 36.3 psi) 0.2 to 4.9 V OUTPUT
*/
MT_MPX4250 = 2,
MT_HONDA3BAR = 3,
MT_DODGE_NEON_2003 = 4,
/**
* 22012AA090
*/
MT_SUBY_DENSO = 5,
/**
* 16040749
*/
MT_GM_3_BAR = 6,
/**
* 20 to 105 kPa (2.9 to 15.2 psi) 0.3 to 4.9 V Output
*/
MT_MPX4100 = 7,
/**
* http://rusefi.com/forum/viewtopic.php?f=3&t=906&p=18976#p18976
* Toyota 89420-02010
*/
MT_TOYOTA_89420_02010 = 8,
/**
* 20 to 250 kPa (2.9 to 36.3 psi) 0.25 to 4.875 OUTPUT
* More precise calibration data for new NXP sensor revisions MPX4250A and MPXA4250A.
* For an old Freescale MPX4250D use "MT_MPX4250".
* See https://www.nxp.com/docs/en/data-sheet/MPX4250A.pdf
*/
MT_MPX4250A = 9,
/**
* Bosch 2.5 Bar TMap Map Sensor with IAT
* 20 kPa at 0.40V, 250 kPa at 4.65V
* 4 pin:
* Pin 1 : Sensor Ground
* Pin 2 : Temp Signal
* Pin 3 : 5v
* Pin 4 : Map Signal
* Volkswagen Passat B6
*/
MT_BOSCH_2_5 = 10,
MT_MAZDA_1_BAR = 11,
MT_GM_2_BAR = 12,
MT_GM_1_BAR = 13,
/**
* 4 bar
*/
MT_MPXH6400 = 14,
} air_pressure_sensor_type_e;
typedef enum __attribute__ ((__packed__)) {
SC_OFF = 0,
/**
* You would use this value if you want to see a detailed graph of your trigger events
*/
SC_TRIGGER = 1,
// unused 2
SC_RPM_ACCEL = 3,
SC_DETAILED_RPM = 4,
SC_AUX_FAST1 = 5,
} sensor_chart_e;
typedef enum {
REVERSE = -1,
NEUTRAL = 0,
GEAR_1 = 1,
GEAR_2 = 2,
GEAR_3 = 3,
GEAR_4 = 4,
} gear_e;
typedef enum __attribute__ ((__packed__)) {
CUSTOM = 0,
Bosch0280218037 = 1,
Bosch0280218004 = 2,
DensoTODO = 3,
} maf_sensor_type_e;
typedef enum __attribute__ ((__packed__)) {
/**
* This is the default mode in which ECU controls timing dynamically
*/
TM_DYNAMIC = 0,
/**
* Fixed timing is useful while you are playing with a timing gun - you need to have fixed
* timing if you want to install your distributor at some specific angle
*/
TM_FIXED = 1,
} timing_mode_e;
/**
* Net Body Computer types
*/
typedef enum __attribute__ ((__packed__)) {
CAN_BUS_NBC_NONE = 0,
CAN_BUS_NBC_FIAT = 1,
CAN_BUS_NBC_VAG = 2,
CAN_BUS_MAZDA_RX8 = 3,
CAN_BUS_NBC_BMW = 4,
CAN_BUS_W202_C180 = 5,
CAN_BUS_BMW_E90 = 6,
CAN_BUS_Haltech = 7,
CAN_BUS_MQB = 8,
CAN_BUS_NISSAN_VQ = 9,
CAN_BUS_GENESIS_COUPE = 10,
CAN_BUS_HONDA_K = 11,
CAN_AIM_DASH = 12,
} can_nbc_e;
typedef enum __attribute__ ((__packed__)) {
TCHARGE_MODE_RPM_TPS = 0,
TCHARGE_MODE_AIR_INTERP = 1,
TCHARGE_MODE_AIR_INTERP_TABLE = 2,
} tChargeMode_e;
// peak type
typedef enum {
MINIMUM = -1,
NOT_A_PEAK = 0,
MAXIMUM = 1
} PidAutoTune_Peak;
// auto tuner state
typedef enum {
AUTOTUNER_OFF = 0,
STEADY_STATE_AT_BASELINE = 1,
STEADY_STATE_AFTER_STEP_UP = 2,
RELAY_STEP_UP = 4,
RELAY_STEP_DOWN = 8,
CONVERGED = 16,
FAILED = 128
} PidAutoTune_AutoTunerState;
typedef enum __attribute__ ((__packed__)) {
INIT = 0,
TPS_THRESHOLD = 1,
RPM_DEAD_ZONE = 2,
PID_VALUE = 4,
PID_UPPER = 16,
BLIP = 64,
} idle_state_e;
// todo: should this be just a boolean?
typedef enum __attribute__ ((__packed__)) {
OPEN_LOOP = 0,
CLOSED_LOOP = 1,
} boostType_e;
typedef enum __attribute__ ((__packed__)) {
SWITCH_INPUT_LAUNCH = 0,
CLUTCH_INPUT_LAUNCH = 1,
ALWAYS_ACTIVE_LAUNCH = 2,
} launchActivationMode_e;
typedef enum __attribute__ ((__packed__)) {
SWITCH_INPUT_ANTILAG = 0,
ALWAYS_ON_ANTILAG = 1,
} antiLagActivationMode_e;
typedef enum __attribute__ ((__packed__)) {
GPPWM_Zero = 0,
GPPWM_Tps = 1,
GPPWM_Map = 2,
GPPWM_Clt = 3,
GPPWM_Iat = 4,
GPPWM_FuelLoad = 5,
GPPWM_IgnLoad = 6,
GPPWM_AuxTemp1 = 7,
GPPWM_AuxTemp2 = 8,
GPPWM_AccelPedal = 9,
GPPWM_Vbatt = 10,
GPPWM_VVT_1I = 11,
GPPWM_VVT_1E = 12,
GPPWM_VVT_2I = 13,
GPPWM_VVT_2E = 14,
GPPWM_EthanolPercent = 15,
GPPWM_AuxLinear1 = 16,
GPPWM_AuxLinear2 = 17,
GPPWM_GppwmOutput1 = 18,
GPPWM_GppwmOutput2 = 19,
GPPWM_GppwmOutput3 = 20,
GPPWM_GppwmOutput4 = 21,
GPPWM_LuaGauge1 = 22,
GPPWM_LuaGauge2 = 23,
GPPWM_Rpm = 24,
} gppwm_channel_e;
typedef enum __attribute__ ((__packed__)) {
B50KBPS = 0, // 50kbps
B83KBPS = 1, // 83.33kbps
B100KBPS = 2, // 100kbps
B125KBPS = 3, // 125kbps
B250KBPS = 4, // 250kbps
B500KBPS = 5, // 500kbps
B1MBPS = 6, // 1Mbps
} can_baudrate_e;
typedef enum __attribute__ ((__packed__)) {
GPPWM_GreaterThan = 0,
GPPWM_LessThan = 1,
} gppwm_compare_mode_e;
typedef enum __attribute__ ((__packed__)) {
VE_None = 0,
VE_MAP = 1,
VE_TPS = 2,
} ve_override_e;
typedef enum __attribute__ ((__packed__)) {
AFR_None = 0,
AFR_MAP = 1,
AFR_Tps = 2,
AFR_AccPedal = 3,
AFR_CylFilling = 4,
} load_override_e;
typedef enum __attribute__ ((__packed__)) {
DC_None = 0,
DC_Throttle1 = 1,
DC_Throttle2 = 2,
DC_IdleValve = 3,
DC_Wastegate = 4,
} dc_function_e;
typedef enum __attribute__ ((__packed__)) {
STEPPER_FULL = 0,
STEPPER_HALF = 2,
STEPPER_FOURTH = 4,
STEPPER_EIGHTH = 8,
} stepper_num_micro_steps_e;
typedef enum __attribute__ ((__packed__)) {
IPT_Low = 0,
IPT_High = 1,
} injector_pressure_type_e;
typedef enum __attribute__ ((__packed__)) {
ICM_None = 0,
ICM_FixedRailPressure = 1,
ICM_SensedRailPressure = 2,
} injector_compensation_mode_e;
typedef enum __attribute__ ((__packed__)) {
INJ_None = 0,
INJ_PolynomialAdder = 1,
INJ_FordModel = 2,
} InjectorNonlinearMode;
typedef enum __attribute__ ((__packed__)) {
HPFP_CAM_NONE = 0,
HPFP_CAM_IN1 = 1,
HPFP_CAM_EX1 = 2,
HPFP_CAM_IN2 = 3,
HPFP_CAM_EX2 = 4,
} hpfp_cam_e;
#if __cplusplus
#include <cstdint>
enum class TsCalMode : uint8_t {
None = 0,
Tps1Max = 1,
Tps1Min = 2,
EtbKp = 3,
EtbKi = 4,
EtbKd = 5,
Tps1SecondaryMax = 6,
Tps1SecondaryMin = 7,
Tps2Max = 8,
Tps2Min = 9,
Tps2SecondaryMax = 10,
Tps2SecondaryMin = 11,
PedalMin = 12,
PedalMax = 13,
};
enum class GearControllerMode : uint8_t {
None = 0,
ButtonShift = 1,
Generic = 2,
};
enum class TransmissionControllerMode : uint8_t {
None = 0,
SimpleTransmissionController = 1,
Gm4l6x = 2,
};
enum class InjectionTimingMode : uint8_t {
End = 0,
Start = 1,
Center = 2,
};
enum class SelectedGear : uint8_t {
Invalid = 0,
ManualPlus = 1,
ManualMinus = 2,
Park = 3,
Reverse = 4,
Neutral = 5,
Drive = 6,
Manual = 7,
Manual3 = 8,
Manual2 = 9,
Manual1 = 10,
Low = 11,
};
#define SC_Exhaust_First 1
#endif // __cplusplus