rusefi/firmware/controllers/trigger/trigger_decoder.cpp

626 lines
20 KiB
C++

/**
* @file trigger_decoder.cpp
*
* @date Dec 24, 2013
* @author Andrey Belomutskiy, (c) 2012-2015
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
#include "obd_error_codes.h"
#include "trigger_decoder.h"
#include "cyclic_buffer.h"
#include "trigger_mazda.h"
#include "trigger_chrysler.h"
#include "trigger_gm.h"
#include "trigger_bmw.h"
#include "trigger_mitsubishi.h"
#include "trigger_subaru.h"
#include "trigger_nissan.h"
#include "auto_generated_enums.h"
#include "trigger_structure.h"
#include "efiGpio.h"
#include "engine.h"
#include "engine_math.h"
#include "trigger_central.h"
#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
#include "sensor_chart.h"
#endif
static OutputPin triggerDecoderErrorPin;
EXTERN_ENGINE
;
// todo: better name for this constant
#define HELPER_PERIOD 720000
static cyclic_buffer<int> errorDetection;
#if ! EFI_PROD_CODE || defined(__DOXYGEN__)
bool printTriggerDebug = false;
float actualSynchGap;
#endif /* ! EFI_PROD_CODE */
static Logging * logger;
efitick_t lastDecodingErrorTime = US2NT(-10000000LL);
/**
* @return TRUE is something is wrong with trigger decoding
*/
bool_t isTriggerDecoderError(void) {
return errorDetection.sum(6) > 4;
}
float TriggerState::getTriggerDutyCycle(int index) {
float time = prevTotalTime[index];
return 100 * time / prevCycleDuration;
}
static trigger_wheel_e eventIndex[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 };
//static trigger_value_e eventType[6] = { TV_LOW, TV_HIGH, TV_LOW, TV_HIGH, TV_LOW, TV_HIGH };
#define getCurrentGapDuration(nowNt) \
(isFirstEvent ? 0 : (nowNt) - toothed_previous_time)
#define nextTriggerEvent() \
{ \
uint32_t prevTime = currentCycle.timeOfPreviousEventNt[triggerWheel]; \
if (prevTime != 0) { \
/* even event - apply the value*/ \
currentCycle.totalTimeNt[triggerWheel] += (nowNt - prevTime); \
currentCycle.timeOfPreviousEventNt[triggerWheel] = 0; \
} else { \
/* odd event - start accumulation */ \
currentCycle.timeOfPreviousEventNt[triggerWheel] = nowNt; \
} \
if (engineConfiguration->useOnlyFrontForTrigger) {currentCycle.current_index++;} \
currentCycle.current_index++; \
}
#define nextRevolution() { \
if (cycleCallback != NULL) { \
cycleCallback(this); \
} \
memcpy(prevTotalTime, currentCycle.totalTimeNt, sizeof(prevTotalTime)); \
prevCycleDuration = nowNt - startOfCycleNt; \
startOfCycleNt = nowNt; \
resetCurrentCycleState(); \
totalRevolutionCounter++; \
runningRevolutionCounter++; \
totalEventCountBase += TRIGGER_SHAPE(size); \
}
/**
* @brief Trigger decoding happens here
* This method is invoked every time we have a fall or rise on one of the trigger sensors.
* This method changes the state of trigger_state_s data structure according to the trigger event
* @param signal type of event which just happened
* @param nowNt current time
*/
void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_S) {
efiAssertVoid(signal <= SHAFT_3RD_UP, "unexpected signal");
trigger_wheel_e triggerWheel = eventIndex[signal];
if (!engineConfiguration->useOnlyFrontForTrigger && curSignal == prevSignal) {
orderingErrorCounter++;
}
prevSignal = curSignal;
curSignal = signal;
currentCycle.eventCount[triggerWheel]++;
efitime_t currentDurationLong = getCurrentGapDuration(nowNt);
/**
* For performance reasons, we want to work with 32 bit values. If there has been more then
* 10 seconds since previous trigger event we do not really care.
*/
currentDuration =
currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong;
bool_t isPrimary = triggerWheel == T_PRIMARY;
if (isLessImportant(signal)) {
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("%s isLessImportant %s %d\r\n",
getTrigger_type_e(engineConfiguration->trigger.type),
getTrigger_event_e(signal),
nowNt);
}
#endif
/**
* For less important events we simply increment the index.
*/
nextTriggerEvent()
;
if (TRIGGER_SHAPE(gapBothDirections) && considerEventForGap()) {
isFirstEvent = false;
durationBeforePrevious = toothed_previous_duration;
toothed_previous_duration = currentDuration;
toothed_previous_time = nowNt;
}
} else {
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("%s event %s %d\r\n",
getTrigger_type_e(engineConfiguration->trigger.type),
getTrigger_event_e(signal),
nowNt);
}
#endif
isFirstEvent = false;
// todo: skip a number of signal from the beginning
#if EFI_PROD_CODE || defined(__DOXYGEN__)
// scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration);
// scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration);
#else
if (toothed_previous_duration != 0) {
// printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration,
// currentDuration, shaftPositionState->toothed_previous_duration);
}
#endif
bool_t isSynchronizationPoint;
if (TRIGGER_SHAPE(isSynchronizationNeeded)) {
/**
* Here I prefer to have two multiplications instead of one division, that's a micro-optimization
*/
isSynchronizationPoint = currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom) &&
currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo) &&
toothed_previous_duration > durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioFrom) &&
toothed_previous_duration < durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioTo)
;
#if EFI_PROD_CODE || defined(__DOXYGEN__)
if (engineConfiguration->isPrintTriggerSynchDetails) {
#else
if (printTriggerDebug) {
#endif /* EFI_PROD_CODE */
float gap = 1.0 * currentDuration / toothed_previous_duration;
#if EFI_PROD_CODE || defined(__DOXYGEN__)
scheduleMsg(logger, "gap=%f @ %d", gap, currentCycle.current_index);
#else
actualSynchGap = gap;
float prevGap = 1.0 * toothed_previous_duration / durationBeforePrevious;
print("current gap %f/%f c=%d prev=%d\r\n", gap, prevGap, currentDuration, toothed_previous_duration);
#endif /* EFI_PROD_CODE */
}
} else {
/**
* in case of noise the counter could be above the expected number of events
*/
int d = engineConfiguration->useOnlyFrontForTrigger ? 2 : 1;
isSynchronizationPoint = !shaft_is_synchronized || (currentCycle.current_index >= TRIGGER_SHAPE(size) - d);
}
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("%s isSynchronizationPoint=%d index=%d %s\r\n",
getTrigger_type_e(engineConfiguration->trigger.type),
isSynchronizationPoint, currentCycle.current_index,
getTrigger_event_e(signal));
}
#endif
if (isSynchronizationPoint) {
/**
* We can check if things are fine by comparing the number of events in a cycle with the expected number of event.
*/
bool isDecodingError = currentCycle.eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0])
|| currentCycle.eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1])
|| currentCycle.eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]);
triggerDecoderErrorPin.setValue(isDecodingError);
if (isDecodingError) {
lastDecodingErrorTime = getTimeNowNt();
totalTriggerErrorCounter++;
if (engineConfiguration->isPrintTriggerSynchDetails) {
#if EFI_PROD_CODE || defined(__DOXYGEN__)
scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d", currentCycle.current_index,
TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]),
TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]);
#endif /* EFI_PROD_CODE */
}
}
errorDetection.add(isDecodingError);
if (isTriggerDecoderError()) {
warning(OBD_PCM_Processor_Fault, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d",
TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]),
TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]);
}
shaft_is_synchronized = true;
// this call would update duty cycle values
nextTriggerEvent()
;
nextRevolution();
} else {
nextTriggerEvent()
;
}
durationBeforePrevious = toothed_previous_duration;
toothed_previous_duration = currentDuration;
toothed_previous_time = nowNt;
}
if (boardConfiguration->sensorChartMode == SC_RPM_ACCEL || boardConfiguration->sensorChartMode == SC_DETAILED_RPM) {
angle_t currentAngle = TRIGGER_SHAPE(eventAngles[currentCycle.current_index]);
// todo: make this '90' depend on cylinder count?
angle_t prevAngle = currentAngle - 90;
fixAngle(prevAngle);
// todo: prevIndex should be pre-calculated
int prevIndex = TRIGGER_SHAPE(triggerIndexByAngle[(int)prevAngle]);
// now let's get precise angle for that event
prevAngle = TRIGGER_SHAPE(eventAngles[prevIndex]);
uint32_t time = nowNt - timeOfLastEvent[prevIndex];
angle_t angleDiff = currentAngle - prevAngle;
// todo: angle diff should be pre-calculated
fixAngle(angleDiff);
float r = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time;
#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
if (boardConfiguration->sensorChartMode == SC_DETAILED_RPM) {
scAddData(currentAngle, r);
} else {
scAddData(currentAngle, r / instantRpmValue[prevIndex]);
}
#endif
instantRpmValue[currentCycle.current_index] = r;
timeOfLastEvent[currentCycle.current_index] = nowNt;
}
}
float getEngineCycle(operation_mode_e operationMode) {
return operationMode == TWO_STROKE ? 360 : 720;
}
void addSkippedToothTriggerEvents(trigger_wheel_e wheel, TriggerShape *s,
int totalTeethCount, int skippedCount,
float toothWidth,
float offset, float engineCycle, float filterLeft, float filterRight) {
efiAssertVoid(totalTeethCount > 0, "total count");
efiAssertVoid(skippedCount >= 0, "skipped count");
for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) {
float angleDown = engineCycle / totalTeethCount * (i + (1 - toothWidth));
float angleUp = engineCycle / totalTeethCount * (i + 1);
s->addEvent(offset + angleDown, wheel, TV_HIGH, filterLeft, filterRight);
s->addEvent(offset + angleUp, wheel, TV_LOW, filterLeft, filterRight);
}
float angleDown = engineCycle / totalTeethCount * (totalTeethCount - skippedCount - 1 + (1 - toothWidth) );
s->addEvent(offset + angleDown, wheel, TV_HIGH, filterLeft, filterRight);
s->addEvent(offset + engineCycle, wheel, TV_LOW, filterLeft, filterRight);
}
void initializeSkippedToothTriggerShapeExt(TriggerShape *s, int totalTeethCount, int skippedCount,
operation_mode_e operationMode) {
efiAssertVoid(totalTeethCount > 0, "totalTeethCount is zero");
// s->totalToothCount = totalTeethCount;
// s->skippedToothCount = skippedCount;
s->setTriggerSynchronizationGap(skippedCount + 1);
s->isSynchronizationNeeded = (skippedCount != 0);
efiAssertVoid(s != NULL, "TriggerShape is NULL");
s->reset(operationMode, false);
addSkippedToothTriggerEvents(T_PRIMARY, s, totalTeethCount, skippedCount, 0.5, 0, getEngineCycle(operationMode),
NO_LEFT_FILTER, NO_RIGHT_FILTER);
}
static void configureOnePlusOne(TriggerShape *s, operation_mode_e operationMode) {
float engineCycle = getEngineCycle(operationMode);
s->reset(FOUR_STROKE_CAM_SENSOR, true);
s->addEvent(180, T_PRIMARY, TV_HIGH);
s->addEvent(360, T_PRIMARY, TV_LOW);
s->addEvent(540, T_SECONDARY, TV_HIGH);
s->addEvent(720, T_SECONDARY, TV_LOW);
s->isSynchronizationNeeded = false;
}
static void configureOnePlus60_2(TriggerShape *s, operation_mode_e operationMode) {
s->reset(FOUR_STROKE_CAM_SENSOR, true);
int totalTeethCount = 60;
int skippedCount = 2;
s->addEvent(2, T_PRIMARY, TV_HIGH);
addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 0, 360, 2, 20);
s->addEvent(20, T_PRIMARY, TV_LOW);
addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 0, 360, 20, NO_RIGHT_FILTER);
addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 360, 360, NO_LEFT_FILTER,
NO_RIGHT_FILTER);
s->isSynchronizationNeeded = false;
}
/**
* External logger is needed because at this point our logger is not yet initialized
*/
void TriggerShape::initializeTriggerShape(Logging *logger DECLARE_ENGINE_PARAMETER_S) {
#if EFI_PROD_CODE || defined(__DOXYGEN__)
efiAssertVoid(getRemainingStack(chThdSelf()) > 256, "init t");
scheduleMsg(logger, "initializeTriggerShape()");
#endif
TriggerShape *triggerShape = this;
const trigger_config_s *triggerConfig = &engineConfiguration->trigger;
clear();
switch (triggerConfig->type) {
case TT_TOOTHED_WHEEL:
initializeSkippedToothTriggerShapeExt(triggerShape, triggerConfig->customTotalToothCount,
triggerConfig->customSkippedToothCount, engineConfiguration->operationMode);
break;
case TT_MAZDA_MIATA_NA:
initializeMazdaMiataNaShape(triggerShape);
break;
case TT_MAZDA_MIATA_NB:
initializeMazdaMiataNbShape(triggerShape);
break;
case TT_DODGE_NEON_1995:
configureNeon1995TriggerShape(triggerShape);
break;
case TT_DODGE_STRATUS:
configureDodgeStratusTriggerShape(triggerShape);
break;
case TT_DODGE_NEON_2003:
configureNeon2003TriggerShape(triggerShape);
break;
case TT_FORD_ASPIRE:
configureFordAspireTriggerShape(triggerShape);
break;
case TT_GM_7X:
// todo: fix this configureGmTriggerShape(triggerShape);
configureFordAspireTriggerShape(triggerShape);
break;
case TT_MAZDA_DOHC_1_4:
configureMazdaProtegeLx(triggerShape);
break;
case TT_ONE_PLUS_ONE:
configureOnePlusOne(triggerShape, engineConfiguration->operationMode);
break;
case TT_ONE_PLUS_TOOTHED_WHEEL_60_2:
configureOnePlus60_2(triggerShape, engineConfiguration->operationMode);
break;
case TT_ONE:
setToothedWheelConfiguration(triggerShape, 1, 0, engineConfiguration->operationMode);
break;
case TT_MAZDA_SOHC_4:
configureMazdaProtegeSOHC(triggerShape);
break;
case TT_MINI_COOPER_R50:
configureMiniCooperTriggerShape(triggerShape);
break;
case TT_TOOTHED_WHEEL_60_2:
setToothedWheelConfiguration(triggerShape, 60, 2, engineConfiguration->operationMode);
break;
case TT_60_2_VW:
setVwConfiguration(triggerShape);
break;
case TT_TOOTHED_WHEEL_36_1:
setToothedWheelConfiguration(triggerShape, 36, 1, engineConfiguration->operationMode);
break;
case TT_HONDA_ACCORD_CD_TWO_WIRES:
configureHondaAccordCD(triggerShape, false, true, T_CHANNEL_3, T_PRIMARY, 0);
break;
case TT_HONDA_ACCORD_CD:
configureHondaAccordCD(triggerShape, true, true, T_CHANNEL_3, T_PRIMARY, 0);
break;
case TT_HONDA_ACCORD_1_24:
configureHondaAccordCD(triggerShape, true, false, T_PRIMARY, T_PRIMARY, 10);
break;
case TT_HONDA_ACCORD_CD_DIP:
configureHondaAccordCDDip(triggerShape);
break;
case TT_MITSU:
initializeMitsubishi4g18(triggerShape);
break;
case TT_DODGE_RAM:
initDodgeRam(triggerShape);
break;
case TT_36_2_2_2:
initialize36_2_2_2(triggerShape);
break;
case TT_NISSAN:
initializeNissan(triggerShape);
break;
default:
firmwareError("initializeTriggerShape() not implemented: %d", triggerConfig->type);
;
return;
}
wave.checkSwitchTimes(getSize());
calculateTriggerSynchPoint(&engine->triggerCentral.triggerState PASS_ENGINE_PARAMETER);
}
TriggerStimulatorHelper::TriggerStimulatorHelper() {
}
void TriggerStimulatorHelper::nextStep(TriggerState *state, TriggerShape * shape, int i,
trigger_config_s const*triggerConfig DECLARE_ENGINE_PARAMETER_S) {
int stateIndex = i % shape->getSize();
int prevIndex = (stateIndex + shape->getSize() - 1 ) % shape->getSize();
int loopIndex = i / shape->getSize();
int time = (int) (HELPER_PERIOD * (loopIndex + shape->wave.getSwitchTime(stateIndex)));
bool_t primaryWheelState = shape->wave.getChannelState(0, prevIndex);
bool_t newPrimaryWheelState = shape->wave.getChannelState(0, stateIndex);
bool_t secondaryWheelState = shape->wave.getChannelState(1, prevIndex);
bool_t newSecondaryWheelState = shape->wave.getChannelState(1, stateIndex);
bool_t thirdWheelState = shape->wave.getChannelState(2, prevIndex);
bool_t new3rdWheelState = shape->wave.getChannelState(2, stateIndex);
if (primaryWheelState != newPrimaryWheelState) {
primaryWheelState = newPrimaryWheelState;
trigger_event_e s = primaryWheelState ? SHAFT_PRIMARY_UP : SHAFT_PRIMARY_DOWN;
state->decodeTriggerEvent(s, time PASS_ENGINE_PARAMETER);
}
if (secondaryWheelState != newSecondaryWheelState) {
secondaryWheelState = newSecondaryWheelState;
trigger_event_e s = secondaryWheelState ? SHAFT_SECONDARY_UP : SHAFT_SECONDARY_DOWN;
state->decodeTriggerEvent(s, time PASS_ENGINE_PARAMETER);
}
if (thirdWheelState != new3rdWheelState) {
thirdWheelState = new3rdWheelState;
trigger_event_e s = thirdWheelState ? SHAFT_3RD_UP : SHAFT_3RD_DOWN;
state->decodeTriggerEvent(s, time PASS_ENGINE_PARAMETER);
}
}
static void onFindIndex(TriggerState *state) {
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
// todo: that's not the best place for this intermediate data storage, fix it!
state->expectedTotalTime[i] = state->currentCycle.totalTimeNt[i];
}
}
static uint32_t doFindTrigger(TriggerStimulatorHelper *helper, TriggerShape * shape,
trigger_config_s const*triggerConfig, TriggerState *state DECLARE_ENGINE_PARAMETER_S) {
for (int i = 0; i < 4 * PWM_PHASE_MAX_COUNT; i++) {
helper->nextStep(state, shape, i, triggerConfig PASS_ENGINE_PARAMETER);
if (state->shaft_is_synchronized)
return i;
}
firmwareError("findTriggerZeroEventIndex() failed");
return EFI_ERROR_CODE;
}
/**
* Trigger shape is defined in a way which is convenient for trigger shape definition
* On the other hand, trigger decoder indexing begins from synchronization event.
*
* This function finds the index of synchronization event within TriggerShape
*/
uint32_t findTriggerZeroEventIndex(TriggerState *state, TriggerShape * shape, trigger_config_s const*triggerConfig
DECLARE_ENGINE_PARAMETER_S) {
#if EFI_PROD_CODE || defined(__DOXYGEN__)
efiAssert(getRemainingStack(chThdSelf()) > 128, "findPos", -1);
#endif
errorDetection.clear();
efiAssert(state != NULL, "NULL state", -1);
state->reset();
// todo: should this variable be declared 'static' to reduce stack usage?
TriggerStimulatorHelper helper;
uint32_t index = doFindTrigger(&helper, shape, triggerConfig, state PASS_ENGINE_PARAMETER);
if (index == EFI_ERROR_CODE) {
return index;
}
efiAssert(state->getTotalRevolutionCounter() == 1, "totalRevolutionCounter", EFI_ERROR_CODE);
/**
* Now that we have just located the synch point, we can simulate the whole cycle
* in order to calculate expected duty cycle
*
* todo: add a comment why are we doing '2 * shape->getSize()' here?
*/
state->cycleCallback = onFindIndex;
int startIndex = engineConfiguration->useOnlyFrontForTrigger ? index + 2 : index + 1;
for (uint32_t i = startIndex; i <= index + 2 * shape->getSize(); i++) {
helper.nextStep(state, shape, i, triggerConfig PASS_ENGINE_PARAMETER);
if (engineConfiguration->useOnlyFrontForTrigger)
i++;
}
efiAssert(state->getTotalRevolutionCounter() == 3, "totalRevolutionCounter2 expected 3", EFI_ERROR_CODE);
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
shape->dutyCycle[i] = 1.0 * state->expectedTotalTime[i] / HELPER_PERIOD;
}
return index % shape->getSize();
}
void initTriggerDecoderLogger(Logging *sharedLogger) {
logger = sharedLogger;
}
void initTriggerDecoder(void) {
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
outputPinRegisterExt2("trg_err", &triggerDecoderErrorPin, boardConfiguration->triggerErrorPin, &boardConfiguration->triggerErrorPinMode);
#endif
}
#endif /* EFI_SHAFT_POSITION_INPUT */