rusefi/firmware/controllers/system/timer/pwm_generator_logic.cpp

410 lines
12 KiB
C++

/**
* @file pwm_generator_logic.cpp
*
* This PWM implementation keep track of when it would be the next time to toggle the signal.
* It constantly sets timer to that next toggle time, then sets the timer again from the callback, and so on.
*
* @date Mar 2, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "global.h"
#include "os_access.h"
#include "pwm_generator_logic.h"
#include "perf_trace.h"
EXTERN_ENGINE;
#if EFI_PROD_CODE
#include "mpu_util.h"
#include "engine.h"
#endif // EFI_PROD_CODE
// 1% duty cycle
#define ZERO_PWM_THRESHOLD 0.01
SimplePwm::SimplePwm() {
waveInstance.init(pinStates);
sr[0] = waveInstance;
init(_switchTimes, sr);
}
SimplePwm::SimplePwm(const char *name) : SimplePwm() {
this->name = name;
}
PwmConfig::PwmConfig() {
memset((void*)&scheduling, 0, sizeof(scheduling));
memset((void*)&safe, 0, sizeof(safe));
dbgNestingLevel = 0;
periodNt = NAN;
mode = PM_NORMAL;
memset(&outputPins, 0, sizeof(outputPins));
phaseCount = 0;
pwmCycleCallback = nullptr;
stateChangeCallback = nullptr;
executor = nullptr;
name = "[noname]";
arg = this;
}
PwmConfig::PwmConfig(float *st, SingleChannelStateSequence *waves) : PwmConfig() {
multiChannelStateSequence.init(st, waves);
}
void PwmConfig::init(float *st, SingleChannelStateSequence *waves) {
multiChannelStateSequence.init(st, waves);
}
/**
* This method allows you to change duty cycle on the fly
* @param dutyCycle value between 0 and 1
* See also setFrequency
*/
void SimplePwm::setSimplePwmDutyCycle(float dutyCycle) {
if (isStopRequested) {
// we are here in order to not change pin once PWM stop was requested
return;
}
if (cisnan(dutyCycle)) {
warning(CUSTOM_DUTY_INVALID, "%s spwd:dutyCycle %.2f", name, dutyCycle);
return;
} else if (dutyCycle < 0) {
warning(CUSTOM_DUTY_TOO_LOW, "%s dutyCycle %.2f", name, dutyCycle);
dutyCycle = 0;
} else if (dutyCycle > 1) {
warning(CUSTOM_PWM_DUTY_TOO_HIGH, "%s duty %.2f", name, dutyCycle);
dutyCycle = 1;
}
#if EFI_PROD_CODE
if (hardPwm) {
hardPwm->setDuty(dutyCycle);
return;
}
#endif
// Handle zero and full duty cycle. This will cause the PWM output to behave like a plain digital output.
if (dutyCycle == 0.0f && stateChangeCallback) {
// Manually fire falling edge
stateChangeCallback(0, arg);
} else if (dutyCycle == 1.0f && stateChangeCallback) {
// Manually fire rising edge
stateChangeCallback(1, arg);
}
if (dutyCycle < ZERO_PWM_THRESHOLD) {
mode = PM_ZERO;
} else if (dutyCycle > FULL_PWM_THRESHOLD) {
mode = PM_FULL;
} else {
mode = PM_NORMAL;
multiChannelStateSequence.setSwitchTime(0, dutyCycle);
}
}
/**
* returns absolute timestamp of state change
*/
static efitick_t getNextSwitchTimeNt(PwmConfig *state) {
efiAssert(CUSTOM_ERR_ASSERT, state->safe.phaseIndex < PWM_PHASE_MAX_COUNT, "phaseIndex range", 0);
int iteration = state->safe.iteration;
// we handle PM_ZERO and PM_FULL separately
float switchTime = state->mode == PM_NORMAL ? state->multiChannelStateSequence.getSwitchTime(state->safe.phaseIndex) : 1;
float periodNt = state->safe.periodNt;
#if DEBUG_PWM
scheduleMsg(&logger, "iteration=%d switchTime=%.2f period=%.2f", iteration, switchTime, period);
#endif /* DEBUG_PWM */
/**
* Once 'iteration' gets relatively high, we might lose calculation precision here.
* This is addressed by iterationLimit below, using any many cycles as possible without overflowing timeToSwitchNt
*/
uint32_t timeToSwitchNt = (uint32_t)((iteration + switchTime) * periodNt);
#if DEBUG_PWM
scheduleMsg(&logger, "start=%d timeToSwitch=%d", state->safe.start, timeToSwitch);
#endif /* DEBUG_PWM */
return state->safe.startNt + timeToSwitchNt;
}
void PwmConfig::setFrequency(float frequency) {
if (cisnan(frequency)) {
// explicit code just to be sure
periodNt = NAN;
return;
}
/**
* see #handleCycleStart()
* 'periodNt' is below 10 seconds here so we use 32 bit type for performance reasons
*/
periodNt = USF2NT(frequency2periodUs(frequency));
}
void PwmConfig::stop() {
isStopRequested = true;
}
void PwmConfig::handleCycleStart() {
if (safe.phaseIndex != 0) {
// https://github.com/rusefi/rusefi/issues/1030
firmwareError(CUSTOM_PWM_CYCLE_START, "handleCycleStart %d", safe.phaseIndex);
return;
}
if (pwmCycleCallback != NULL) {
pwmCycleCallback(this);
}
// Compute the maximum number of iterations without overflowing a uint32_t worth of timestamp
uint32_t iterationLimit = (0xFFFFFFFF / periodNt) - 2;
efiAssertVoid(CUSTOM_ERR_6580, periodNt != 0, "period not initialized");
efiAssertVoid(CUSTOM_ERR_6580, iterationLimit > 0, "iterationLimit invalid");
if (forceCycleStart || safe.periodNt != periodNt || safe.iteration == iterationLimit) {
/**
* period length has changed - we need to reset internal state
*/
safe.startNt = getTimeNowNt();
safe.iteration = 0;
safe.periodNt = periodNt;
forceCycleStart = false;
#if DEBUG_PWM
scheduleMsg(&logger, "state reset start=%d iteration=%d", state->safe.start, state->safe.iteration);
#endif
}
}
/**
* @return Next time for signal toggle
*/
efitick_t PwmConfig::togglePwmState() {
if (isStopRequested) {
return 0;
}
#if DEBUG_PWM
scheduleMsg(&logger, "togglePwmState phaseIndex=%d iteration=%d", safe.phaseIndex, safe.iteration);
scheduleMsg(&logger, "period=%.2f safe.period=%.2f", period, safe.periodNt);
#endif
if (cisnan(periodNt)) {
/**
* NaN period means PWM is paused, we also set the pin low
*/
stateChangeCallback(0, arg);
return getTimeNowNt() + MS2NT(NAN_FREQUENCY_SLEEP_PERIOD_MS);
}
if (mode != PM_NORMAL) {
// in case of ZERO or FULL we are always at starting index
safe.phaseIndex = 0;
}
if (safe.phaseIndex == 0) {
handleCycleStart();
}
/**
* Here is where the 'business logic' - the actual pin state change is happening
*/
int cbStateIndex;
if (mode == PM_NORMAL) {
// callback state index is offset by one. todo: why? can we simplify this?
cbStateIndex = safe.phaseIndex == 0 ? phaseCount - 1 : safe.phaseIndex - 1;
} else if (mode == PM_ZERO) {
cbStateIndex = 0;
} else {
cbStateIndex = 1;
}
{
ScopePerf perf(PE::PwmConfigStateChangeCallback);
stateChangeCallback(cbStateIndex, arg);
}
efitick_t nextSwitchTimeNt = getNextSwitchTimeNt(this);
#if DEBUG_PWM
scheduleMsg(&logger, "%s: nextSwitchTime %d", state->name, nextSwitchTime);
#endif /* DEBUG_PWM */
// If we're very far behind schedule, restart the cycle fresh to avoid scheduling a huge pile of events all at once
// This can happen during config write or debugging where CPU is halted for multiple seconds
bool isVeryBehindSchedule = nextSwitchTimeNt < getTimeNowNt() - MS2NT(10);
safe.phaseIndex++;
if (isVeryBehindSchedule || safe.phaseIndex == phaseCount || mode != PM_NORMAL) {
safe.phaseIndex = 0; // restart
safe.iteration++;
if (isVeryBehindSchedule) {
forceCycleStart = true;
}
}
#if EFI_UNIT_TEST
printf("PWM: nextSwitchTimeNt=%d phaseIndex=%d iteration=%d\r\n", nextSwitchTimeNt,
safe.phaseIndex,
safe.iteration);
#endif /* EFI_UNIT_TEST */
return nextSwitchTimeNt;
}
/**
* Main PWM loop: toggle pin & schedule next invocation
*
* First invocation happens on application thread
*/
static void timerCallback(PwmConfig *state) {
ScopePerf perf(PE::PwmGeneratorCallback);
state->dbgNestingLevel++;
efiAssertVoid(CUSTOM_ERR_6581, state->dbgNestingLevel < 25, "PWM nesting issue");
efitick_t switchTimeNt = state->togglePwmState();
if (switchTimeNt == 0) {
// we are here when PWM gets stopped
return;
}
if (state->executor == nullptr) {
firmwareError(CUSTOM_NULL_EXECUTOR, "exec on %s", state->name);
return;
}
state->executor->scheduleByTimestampNt(&state->scheduling, switchTimeNt, { timerCallback, state });
state->dbgNestingLevel--;
}
/**
* Incoming parameters are potentially just values on current stack, so we have to copy
* into our own permanent storage, right?
*/
void copyPwmParameters(PwmConfig *state, int phaseCount, float const *switchTimes, int waveCount, pin_state_t *const *pinStates) {
state->phaseCount = phaseCount;
for (int phaseIndex = 0; phaseIndex < phaseCount; phaseIndex++) {
state->multiChannelStateSequence.setSwitchTime(phaseIndex, switchTimes[phaseIndex]);
for (int channelIndex = 0; channelIndex < waveCount; channelIndex++) {
// print("output switch time index (%d/%d) at %.2f to %d\r\n", phaseIndex, channelIndex,
// switchTimes[phaseIndex], pinStates[waveIndex][phaseIndex]);
pin_state_t value = pinStates[channelIndex][phaseIndex];
state->multiChannelStateSequence.channels[channelIndex].setState(phaseIndex, value);
}
}
if (state->mode == PM_NORMAL) {
state->multiChannelStateSequence.checkSwitchTimes(phaseCount, 1);
}
}
/**
* this method also starts the timer cycle
* See also startSimplePwm
*/
void PwmConfig::weComplexInit(const char *msg, ExecutorInterface *executor,
const int phaseCount,
float const *switchTimes,
const int waveCount,
pin_state_t *const*pinStates, pwm_cycle_callback *pwmCycleCallback, pwm_gen_callback *stateChangeCallback) {
UNUSED(msg);
this->executor = executor;
isStopRequested = false;
efiAssertVoid(CUSTOM_ERR_6582, periodNt != 0, "period is not initialized");
if (phaseCount == 0) {
firmwareError(CUSTOM_ERR_PWM_1, "signal length cannot be zero");
return;
}
if (phaseCount > PWM_PHASE_MAX_COUNT) {
firmwareError(CUSTOM_ERR_PWM_2, "too many phases in PWM");
return;
}
efiAssertVoid(CUSTOM_ERR_6583, waveCount > 0, "waveCount should be positive");
this->pwmCycleCallback = pwmCycleCallback;
this->stateChangeCallback = stateChangeCallback;
multiChannelStateSequence.waveCount = waveCount;
copyPwmParameters(this, phaseCount, switchTimes, waveCount, pinStates);
safe.phaseIndex = 0;
safe.periodNt = -1;
safe.iteration = -1;
// let's start the indefinite callback loop of PWM generation
timerCallback(this);
}
void startSimplePwm(SimplePwm *state, const char *msg, ExecutorInterface *executor,
OutputPin *output, float frequency, float dutyCycle, pwm_gen_callback *stateChangeCallback) {
efiAssertVoid(CUSTOM_ERR_PWM_STATE_ASSERT, state != NULL, "state");
efiAssertVoid(CUSTOM_ERR_PWM_DUTY_ASSERT, dutyCycle >= 0 && dutyCycle <= 1, "dutyCycle");
efiAssertVoid(CUSTOM_ERR_PWM_CALLBACK_ASSERT, stateChangeCallback != NULL, "listener");
if (frequency < 1) {
warning(CUSTOM_OBD_LOW_FREQUENCY, "low frequency %.2f", frequency);
return;
}
float switchTimes[] = { dutyCycle, 1 };
pin_state_t pinStates0[] = { TV_FALL, TV_RISE };
state->setSimplePwmDutyCycle(dutyCycle);
pin_state_t *pinStates[1] = { pinStates0 };
state->outputPins[0] = output;
state->setFrequency(frequency);
state->weComplexInit(msg, executor, 2, switchTimes, 1, pinStates, NULL, stateChangeCallback);
}
void startSimplePwmExt(SimplePwm *state, const char *msg,
ExecutorInterface *executor,
brain_pin_e brainPin, OutputPin *output, float frequency,
float dutyCycle, pwm_gen_callback *stateChangeCallback) {
output->initPin(msg, brainPin);
startSimplePwm(state, msg, executor, output, frequency, dutyCycle, stateChangeCallback);
}
void startSimplePwmHard(SimplePwm *state, const char *msg,
ExecutorInterface *executor,
brain_pin_e brainPin, OutputPin *output, float frequency,
float dutyCycle) {
#if EFI_PROD_CODE && HAL_USE_PWM
auto hardPwm = hardware_pwm::tryInitPin(msg, brainPin, frequency, dutyCycle);
if (hardPwm) {
state->hardPwm = hardPwm;
} else {
#endif
startSimplePwmExt(state, msg, executor, brainPin, output, frequency, dutyCycle);
#if EFI_PROD_CODE && HAL_USE_PWM
}
#endif
}
/**
* This method controls the actual hardware pins
*
* This method takes ~350 ticks.
*/
void applyPinState(int stateIndex, PwmConfig *state) /* pwm_gen_callback */ {
#if EFI_PROD_CODE
if (!engine->isPwmEnabled) {
for (int channelIndex = 0; channelIndex < state->multiChannelStateSequence.waveCount; channelIndex++) {
OutputPin *output = state->outputPins[channelIndex];
output->setValue(0);
}
return;
}
#endif // EFI_PROD_CODE
efiAssertVoid(CUSTOM_ERR_6663, stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex");
efiAssertVoid(CUSTOM_ERR_6664, state->multiChannelStateSequence.waveCount <= PWM_PHASE_MAX_WAVE_PER_PWM, "invalid waveCount");
for (int channelIndex = 0; channelIndex < state->multiChannelStateSequence.waveCount; channelIndex++) {
OutputPin *output = state->outputPins[channelIndex];
int value = state->multiChannelStateSequence.getChannelState(channelIndex, stateIndex);
output->setValue(value);
}
}