rusefi/firmware/controllers/math/engine_math.cpp

395 lines
12 KiB
C++

/**
* @file engine_math.cpp
* @brief
*
* @date Jul 13, 2013
* @author Andrey Belomutskiy, (c) 2012-2014
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "engine_math.h"
#include "engine_configuration.h"
#include "interpolation.h"
#include "allsensors.h"
#include "io_pins.h"
#include "OutputSignalList.h"
#include "trigger_decoder.h"
#include "event_registry.h"
/*
* default Volumetric Efficiency
*/
//float getDefaultVE(int rpm) {
// if (rpm > 5000)
// return interpolate(5000, 1.1, 8000, 1, rpm);
// return interpolate(500, 0.5, 5000, 1.1, rpm);
//}
/**
* @return time needed to rotate crankshaft by one degree, in milliseconds.
* @deprecated
*/
float getOneDegreeTimeMs(int rpm) {
return 1000.0f * 60 / 360 / rpm;
}
/**
* @return time needed to rotate crankshaft by one degree, in microseconds.
*/
float getOneDegreeTimeUs(int rpm) {
return 1000000.0f * 60 / 360 / rpm;
}
/**
* @return number of milliseconds in one crankshaft revolution
*/
float getCrankshaftRevolutionTimeMs(int rpm) {
return 360 * getOneDegreeTimeMs(rpm);
}
/**
* @brief Shifts angle into the [0..720) range
* TODO: should be 'crankAngleRange' range?
*/
float fixAngle(float angle) {
// I guess this implementation would be faster than 'angle % 720'
while (angle < 0)
angle += 720;
while (angle >= 720)
angle -= 720;
return angle;
}
/**
* @brief Returns engine load according to selected engine_load_mode
*
*/
float getEngineLoadT(Engine *engine) {
efiAssert(engine!=NULL, "engine 2NULL", NAN);
engine_configuration_s *engineConfiguration = engine->engineConfiguration;
efiAssert(engineConfiguration!=NULL, "engineConfiguration 2NULL", NAN);
switch (engineConfiguration->algorithm) {
case LM_MAF:
return getMafT(engineConfiguration);
case LM_SPEED_DENSITY:
// SD engine load is used for timing lookup but not for fuel calculation
case LM_MAP:
return getMap();
case LM_TPS:
return getTPS();
default:
firmwareError("Unexpected engine load parameter: %d", engineConfiguration->algorithm);
return -1;
}
}
void setSingleCoilDwell(engine_configuration_s *engineConfiguration) {
for (int i = 0; i < DWELL_CURVE_SIZE; i++) {
engineConfiguration->sparkDwellBins[i] = 0;
engineConfiguration->sparkDwell[i] = -1;
}
engineConfiguration->sparkDwellBins[5] = 1;
engineConfiguration->sparkDwell[5] = 4;
engineConfiguration->sparkDwellBins[6] = 4500;
engineConfiguration->sparkDwell[6] = 4;
engineConfiguration->sparkDwellBins[7] = 12500;
engineConfiguration->sparkDwell[7] = 0;
}
int isCrankingRT(engine_configuration_s *engineConfiguration, int rpm) {
return rpm > 0 && rpm < engineConfiguration->crankingSettings.crankingRpm;
}
OutputSignalList injectonSignals CCM_OPTIONAL;
static void registerSparkEvent(engine_configuration_s const *engineConfiguration, trigger_shape_s * s,
IgnitionEventList *list, io_pin_e pin, float localAdvance, float dwell) {
IgnitionEvent *event = list->getNextActuatorEvent();
if (event == NULL)
return; // error already reported
event->io_pin = pin;
event->advance = localAdvance;
findTriggerPosition(engineConfiguration, s, &event->dwellPosition, localAdvance - dwell);
}
void initializeIgnitionActions(float advance, float dwellAngle, engine_configuration_s *engineConfiguration,
engine_configuration2_s *engineConfiguration2, IgnitionEventList *list) {
efiAssertVoid(engineConfiguration->cylindersCount > 0, "cylindersCount");
list->resetEventList();
switch (engineConfiguration->ignitionMode) {
case IM_ONE_COIL:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
// todo: extract method
float localAdvance = advance + 720.0f * i / engineConfiguration->cylindersCount;
registerSparkEvent(engineConfiguration, &engineConfiguration2->triggerShape, list,
SPARKOUT_1_OUTPUT, localAdvance, dwellAngle);
}
break;
case IM_WASTED_SPARK:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
float localAdvance = advance + 720.0f * i / engineConfiguration->cylindersCount;
int wastedIndex = i % (engineConfiguration->cylindersCount / 2);
int id = getCylinderId(engineConfiguration->firingOrder, wastedIndex) - 1;
io_pin_e ioPin = (io_pin_e) (SPARKOUT_1_OUTPUT + id);
registerSparkEvent(engineConfiguration, &engineConfiguration2->triggerShape, list,
ioPin, localAdvance, dwellAngle);
}
break;
case IM_INDIVIDUAL_COILS:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
float localAdvance = advance + 720.0f * i / engineConfiguration->cylindersCount;
io_pin_e pin = (io_pin_e) ((int) SPARKOUT_1_OUTPUT + getCylinderId(engineConfiguration->firingOrder, i) - 1);
registerSparkEvent(engineConfiguration, &engineConfiguration2->triggerShape, list, pin,
localAdvance, dwellAngle);
}
break;
default:
firmwareError("unsupported ignitionMode %d in initializeIgnitionActions()", engineConfiguration->ignitionMode);
}
}
static void registerInjectionEvent(engine_configuration_s const *e,
trigger_shape_s *s,
ActuatorEventList *list,
io_pin_e pin,
float angle
) {
registerActuatorEventExt(e, s, list->getNextActuatorEvent(), injectonSignals.add(pin), angle);
}
float getFuelMultiplier(engine_configuration_s const *e, injection_mode_e mode) {
switch(mode) {
case IM_SEQUENTIAL:
return 1;
case IM_SIMULTANEOUS:
// todo: pre-calculate and save into ec2?
return 1.0 / e->cylindersCount;
case IM_BATCH:
return 2.0 / e->cylindersCount;
default:
firmwareError("Unexpected getFuelMultiplier %d", mode);
return NAN;
}
}
void addFuelEvents(engine_configuration_s const *e, engine_configuration2_s *engineConfiguration2,
ActuatorEventList *list, injection_mode_e mode) {
list->resetEventList();
trigger_shape_s *s = &engineConfiguration2->triggerShape;
float baseAngle = e->globalTriggerAngleOffset + e->injectionOffset;
switch (mode) {
case IM_SEQUENTIAL:
for (int i = 0; i < e->cylindersCount; i++) {
io_pin_e pin = (io_pin_e) ((int) INJECTOR_1_OUTPUT + getCylinderId(e->firingOrder, i) - 1);
float angle = baseAngle + i * 720.0 / e->cylindersCount;
registerInjectionEvent(e, s, list, pin, angle);
}
break;
case IM_SIMULTANEOUS:
for (int i = 0; i < e->cylindersCount; i++) {
float angle = baseAngle + i * 720.0 / e->cylindersCount;
for (int j = 0; j < e->cylindersCount; j++) {
io_pin_e pin = (io_pin_e) ((int) INJECTOR_1_OUTPUT + j);
registerInjectionEvent(e, s, list, pin, angle);
}
}
break;
case IM_BATCH:
for (int i = 0; i < e->cylindersCount; i++) {
int index = i % (e->cylindersCount / 2);
io_pin_e pin = (io_pin_e) ((int) INJECTOR_1_OUTPUT + index);
float angle = baseAngle + i * 720.0 / e->cylindersCount;
registerInjectionEvent(e, s, list, pin, angle);
/**
* also fire the 2nd half of the injectors so that we can implement a batch mode on individual wires
*/
pin = (io_pin_e) ((int) INJECTOR_1_OUTPUT + index + (e->cylindersCount / 2));
registerInjectionEvent(e, s, list, pin, angle);
}
break;
default:
firmwareError("Unexpected injection mode %d", mode);
}
}
/**
* @return Spark dwell time, in milliseconds.
*/
float getSparkDwellMsT(engine_configuration_s *engineConfiguration, int rpm) {
if (isCrankingR(rpm)) {
// technically this could be implemented via interpolate2d
float angle = engineConfiguration->crankingChargeAngle;
return getOneDegreeTimeMs(rpm) * angle;
}
efiAssert(!cisnan(rpm), "invalid rpm", NAN);
return interpolate2d(rpm, engineConfiguration->sparkDwellBins, engineConfiguration->sparkDwell, DWELL_CURVE_SIZE);
}
int getEngineCycleEventCount2(operation_mode_e mode, trigger_shape_s * s) {
return mode == FOUR_STROKE_CAM_SENSOR ? s->getSize() : 2 * s->getSize();
}
/**
* Trigger event count equals engine cycle event count if we have a cam sensor.
* Two trigger cycles make one engine cycle in case of a four stroke engine If we only have a cranksensor.
*/
int getEngineCycleEventCount(engine_configuration_s const *engineConfiguration, trigger_shape_s * s) {
return getEngineCycleEventCount2(getOperationMode(engineConfiguration), s);
}
void findTriggerPosition(engine_configuration_s const *engineConfiguration, trigger_shape_s * s,
event_trigger_position_s *position, float angleOffset) {
angleOffset = fixAngle(angleOffset + engineConfiguration->globalTriggerAngleOffset);
int engineCycleEventCount = getEngineCycleEventCount(engineConfiguration, s);
int middle;
int left = 0;
int right = engineCycleEventCount - 1;
/**
* Let's find the last trigger angle which is less or equal to the desired angle
* todo: extract binary search as template method?
*/
while (true) {
middle = (left + right) / 2;
if (middle == left) {
break;
}
if (angleOffset < s->eventAngles[middle]) {
right = middle;
} else if (angleOffset > s->eventAngles[middle]) {
left = middle;
} else {
break;
}
}
float eventAngle = s->eventAngles[middle];
if (angleOffset < eventAngle) {
firmwareError("angle constraint violation in registerActuatorEventExt(): %f/%f", angleOffset, eventAngle);
return;
}
position->eventIndex = middle;
position->eventAngle = eventAngle;
position->angleOffset = angleOffset - eventAngle;
}
void registerActuatorEventExt(engine_configuration_s const *engineConfiguration, trigger_shape_s * s, ActuatorEvent *e,
OutputSignal *actuator, float angleOffset) {
efiAssertVoid(s->getSize() > 0, "uninitialized trigger_shape_s");
if (e == NULL) {
// error already reported
return;
}
e->actuator = actuator;
findTriggerPosition(engineConfiguration, s, &e->position, angleOffset);
}
static int order_1_THEN_3_THEN_4_THEN2[] = { 1, 3, 4, 2 };
static int order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[] = { 1, 5, 3, 6, 2, 4 };
static int order_1_8_4_3_6_5_7_2[] = {1, 8, 4, 3, 6, 5, 7, 2};
/**
* @param index from zero to cylindersCount - 1
* @return cylinderId from one to cylindersCount
*/
int getCylinderId(firing_order_e firingOrder, int index) {
switch (firingOrder) {
case FO_ONE_CYLINDER:
return 1;
case FO_1_THEN_3_THEN_4_THEN2:
return order_1_THEN_3_THEN_4_THEN2[index];
case FO_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4:
return order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[index];
case FO_1_8_4_3_6_5_7_2:
return order_1_8_4_3_6_5_7_2[index];
default:
firmwareError("getCylinderId not supported for %d", firingOrder);
}
return -1;
}
void prepareOutputSignals(engine_configuration_s *engineConfiguration, engine_configuration2_s *engineConfiguration2) {
// todo: move this reset into decoder
engineConfiguration2->triggerShape.calculateTriggerSynchPoint(&engineConfiguration->triggerConfig);
injectonSignals.clear();
EventHandlerConfiguration *config = &engineConfiguration2->engineEventConfiguration;
addFuelEvents(engineConfiguration, engineConfiguration2, &config->crankingInjectionEvents,
engineConfiguration->crankingInjectionMode);
addFuelEvents(engineConfiguration, engineConfiguration2, &config->injectionEvents,
engineConfiguration->injectionMode);
}
void setFuelRpmBin(engine_configuration_s *engineConfiguration, float l, float r) {
setTableBin(engineConfiguration->fuelRpmBins, FUEL_RPM_COUNT, l, r);
}
void setFuelLoadBin(engine_configuration_s *engineConfiguration, float l, float r) {
setTableBin(engineConfiguration->fuelLoadBins, FUEL_LOAD_COUNT, l, r);
}
void setTimingRpmBin(engine_configuration_s *engineConfiguration, float l, float r) {
setTableBin(engineConfiguration->ignitionRpmBins, IGN_RPM_COUNT, l, r);
}
void setTimingLoadBin(engine_configuration_s *engineConfiguration, float l, float r) {
setTableBin(engineConfiguration->ignitionLoadBins, IGN_LOAD_COUNT, l, r);
}
int isInjectionEnabled(engine_configuration_s *engineConfiguration) {
// todo: is this worth a method? should this be inlined?
return engineConfiguration->isInjectionEnabled;
}