rusefi/firmware/controllers/actuators/electronic_throttle.cpp

1198 lines
34 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @file electronic_throttle.cpp
* @brief Electronic Throttle driver
*
* @see test test_etb.cpp
*
*
* Limited user documentation at https://github.com/rusefi/rusefi/wiki/HOWTO_electronic_throttle_body
*
*
* ETB is controlled according to pedal position input (pedal position sensor is a potentiometer)
* pedal 0% means pedal not pressed / idle
* pedal 100% means pedal all the way down
* (not TPS - not the one you can calibrate in TunerStudio)
*
*
* See also pid.cpp
*
* Relevant console commands:
*
* ETB_BENCH_ENGINE
* set engine_type 58
*
* enable verbose_etb
* disable verbose_etb
* etbinfo
* set mock_pedal_position X
*
*
* set debug_mode 17
* for PID outputs
*
* set etb_p X
* set etb_i X
* set etb_d X
* set etb_o X
*
* set_etb_duty X
*
* http://rusefi.com/forum/viewtopic.php?f=5&t=592
*
* @date Dec 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "pch.h"
#include "electronic_throttle_impl.h"
#if EFI_ELECTRONIC_THROTTLE_BODY
#include "dc_motor.h"
#include "dc_motors.h"
#include "pid_auto_tune.h"
#include "defaults.h"
#if defined(HAS_OS_ACCESS)
#error "Unexpected OS ACCESS HERE"
#endif
#if HW_PROTEUS
#include "proteus_meta.h"
#endif // HW_PROTEUS
#ifndef ETB_MAX_COUNT
#define ETB_MAX_COUNT 2
#endif /* ETB_MAX_COUNT */
static pedal2tps_t pedal2tpsMap;
static Map3D<6, 6, int8_t, uint8_t, uint8_t> throttle2TrimTable;
constexpr float etbPeriodSeconds = 1.0f / ETB_LOOP_FREQUENCY;
static bool startupPositionError = false;
#define STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD 5
static const float hardCodedetbHitachiBiasBins[8] = {0.0, 19.0, 21.0, 22.0, 23.0, 25.0, 30.0, 100.0};
static const float hardCodedetbHitachiBiasValues[8] = {-18.0, -17.0, -15.0, 0.0, 16.0, 20.0, 20.0, 20.0};
/* Generated by TS2C on Thu Aug 20 21:10:02 EDT 2020*/
void setHitachiEtbBiasBins() {
copyArray(config->etbBiasBins, hardCodedetbHitachiBiasBins);
copyArray(config->etbBiasValues, hardCodedetbHitachiBiasValues);
}
static SensorType functionToPositionSensor(dc_function_e func) {
switch(func) {
case DC_Throttle1: return SensorType::Tps1;
case DC_Throttle2: return SensorType::Tps2;
case DC_IdleValve: return SensorType::IdlePosition;
case DC_Wastegate: return SensorType::WastegatePosition;
default: return SensorType::Invalid;
}
}
static SensorType functionToTpsSensor(dc_function_e func) {
switch(func) {
case DC_Throttle1: return SensorType::Tps1;
default: return SensorType::Tps2;
}
}
static SensorType functionToTpsSensorPrimary(dc_function_e func) {
switch(func) {
case DC_Throttle1: return SensorType::Tps1Primary;
default: return SensorType::Tps2Primary;
}
}
static SensorType functionToTpsSensorSecondary(dc_function_e func) {
switch(func) {
case DC_Throttle1: return SensorType::Tps1Secondary;
default: return SensorType::Tps2Secondary;
}
}
#if EFI_TUNER_STUDIO
static TsCalMode functionToCalModePriMin(dc_function_e func) {
switch (func) {
case DC_Throttle1: return TsCalMode::Tps1Min;
default: return TsCalMode::Tps2Min;
}
}
static TsCalMode functionToCalModePriMax(dc_function_e func) {
switch (func) {
case DC_Throttle1: return TsCalMode::Tps1Max;
default: return TsCalMode::Tps2Max;
}
}
static TsCalMode functionToCalModeSecMin(dc_function_e func) {
switch (func) {
case DC_Throttle1: return TsCalMode::Tps1SecondaryMin;
default: return TsCalMode::Tps2SecondaryMin;
}
}
static TsCalMode functionToCalModeSecMax(dc_function_e func) {
switch (func) {
case DC_Throttle1: return TsCalMode::Tps1SecondaryMax;
default: return TsCalMode::Tps2SecondaryMax;
}
}
#endif // EFI_TUNER_STUDIO
static percent_t directPwmValue = NAN;
#define ETB_DUTY_LIMIT 0.9
// this macro clamps both positive and negative percentages from about -100% to 100%
#define ETB_PERCENT_TO_DUTY(x) (clampF(-ETB_DUTY_LIMIT, 0.01f * (x), ETB_DUTY_LIMIT))
bool EtbController::init(dc_function_e function, DcMotor *motor, pid_s *pidParameters, const ValueProvider3D* pedalMap, bool hasPedal) {
if (function == DC_None) {
// if not configured, don't init.
etbErrorCode = (int8_t)TpsState::None;
return false;
}
m_function = function;
m_positionSensor = functionToPositionSensor(function);
// If we are a throttle, require redundant TPS sensor
if (isEtbMode()) {
// We don't need to init throttles, so nothing to do here.
if (!hasPedal) {
etbErrorCode = (int8_t)TpsState::None;
return false;
}
// If no sensor is configured for this throttle, skip initialization.
if (!Sensor::hasSensor(functionToTpsSensor(function))) {
etbErrorCode = (int8_t)TpsState::TpsError;
return false;
}
if (!Sensor::isRedundant(m_positionSensor)) {
firmwareError(
OBD_TPS_Configuration,
"Use of electronic throttle requires %s to be redundant.",
Sensor::getSensorName(m_positionSensor)
);
etbErrorCode = (int8_t)TpsState::Redundancy;
return false;
}
if (!Sensor::isRedundant(SensorType::AcceleratorPedal)) {
firmwareError(
OBD_TPS_Configuration,
"Use of electronic throttle requires accelerator pedal to be redundant."
);
etbErrorCode = (int8_t)TpsState::Redundancy;
return false;
}
}
m_motor = motor;
m_pid.initPidClass(pidParameters);
m_pedalMap = pedalMap;
// Ignore 3% position error before complaining
m_errorAccumulator.init(3.0f, etbPeriodSeconds);
reset();
return true;
}
void EtbController::reset() {
m_shouldResetPid = true;
etbDutyRateOfChange = etbDutyAverage = 0;
m_dutyRocAverage.reset();
m_dutyAverage.reset();
etbTpsErrorCounter = 0;
etbPpsErrorCounter = 0;
}
void EtbController::onConfigurationChange(pid_s* previousConfiguration) {
if (m_motor && !m_pid.isSame(previousConfiguration)) {
m_shouldResetPid = true;
}
m_dutyRocAverage.init(engineConfiguration->etbRocExpAverageLength);
m_dutyAverage.init(engineConfiguration->etbExpAverageLength);
doInitElectronicThrottle();
}
void EtbController::showStatus() {
m_pid.showPidStatus("ETB");
}
expected<percent_t> EtbController::observePlant() const {
return Sensor::get(m_positionSensor);
}
void EtbController::setIdlePosition(percent_t pos) {
m_idlePosition = pos;
}
void EtbController::setWastegatePosition(percent_t pos) {
m_wastegatePosition = pos;
}
expected<percent_t> EtbController::getSetpoint() {
switch (m_function) {
case DC_Throttle1:
case DC_Throttle2:
return getSetpointEtb();
case DC_IdleValve:
return getSetpointIdleValve();
case DC_Wastegate:
return getSetpointWastegate();
default:
return unexpected;
}
}
expected<percent_t> EtbController::getSetpointIdleValve() const {
// VW ETB idle mode uses an ETB only for idle (a mini-ETB sets the lower stop, and a normal cable
// can pull the throttle up off the stop.), so we directly control the throttle with the idle position.
#if EFI_TUNER_STUDIO && (EFI_PROD_CODE || EFI_SIMULATOR)
engine->outputChannels.etbTarget = m_idlePosition;
#endif // EFI_TUNER_STUDIO
return clampF(0, m_idlePosition, 100);
}
expected<percent_t> EtbController::getSetpointWastegate() const {
return clampF(0, m_wastegatePosition, 100);
}
expected<percent_t> EtbController::getSetpointEtb() {
// Autotune runs with 50% target position
if (m_isAutotune) {
return 50.0f;
}
// A few extra preconditions if throttle control is invalid
if (startupPositionError) {
return unexpected;
}
// If the pedal map hasn't been set, we can't provide a setpoint.
if (!m_pedalMap) {
return unexpected;
}
auto pedalPosition = Sensor::get(SensorType::AcceleratorPedal);
// If the pedal has failed, just use 0 position.
// This is safer than disabling throttle control - we can at least push the throttle closed
// and let the engine idle.
float sanitizedPedal = clampF(0, pedalPosition.value_or(0), 100);
float rpm = Sensor::getOrZero(SensorType::Rpm);
etbCurrentTarget = m_pedalMap->getValue(rpm, sanitizedPedal);
percent_t etbIdlePosition = clampF(0, m_idlePosition, 100);
percent_t etbIdleAddition = PERCENT_DIV * engineConfiguration->etbIdleThrottleRange * etbIdlePosition;
// Interpolate so that the idle adder just "compresses" the throttle's range upward.
// [0, 100] -> [idle, 100]
// 0% target from table -> idle position as target
// 100% target from table -> 100% target position
idlePosition = interpolateClamped(0, etbIdleAddition, 100, 100, etbCurrentTarget);
percent_t targetPosition = idlePosition + getLuaAdjustment();
#if EFI_ANTILAG_SYSTEM
if (engine->antilagController.isAntilagCondition) {
targetPosition += engineConfiguration->ALSEtbAdd;
}
#endif /* EFI_ANTILAG_SYSTEM */
// Apply any adjustment that this throttle alone needs
// Clamped to +-10 to prevent anything too wild
trim = clampF(-10, getThrottleTrim(rpm, targetPosition), 10);
targetPosition += trim;
// Clamp before rev limiter to avoid ineffective rev limit due to crazy out of range position target
targetPosition = clampF(0, targetPosition, 100);
// Lastly, apply ETB rev limiter
auto etbRpmLimit = engineConfiguration->etbRevLimitStart;
if (etbRpmLimit != 0) {
auto fullyLimitedRpm = etbRpmLimit + engineConfiguration->etbRevLimitRange;
float targetPositionBefore = targetPosition;
// Linearly taper throttle to closed from the limit across the range
targetPosition = interpolateClamped(etbRpmLimit, targetPosition, fullyLimitedRpm, 0, rpm);
// rev limit active if the position was changed by rev limiter
etbRevLimitActive = absF(targetPosition - targetPositionBefore) > 0.1f;
}
float minPosition = engineConfiguration->etbMinimumPosition;
if (minPosition < 0.01) {
// compatibility with legacy tunes, todo: remove in Nov of 2022
minPosition = 1;
}
// Keep the throttle just barely off the lower stop, and less than the user-configured maximum
float maxPosition = engineConfiguration->etbMaximumPosition;
if (maxPosition < 70) {
// compatibility with legacy tunes, todo: remove in Aug of 2022
maxPosition = 100;
} else {
// Don't allow max position over 100
maxPosition = minF(maxPosition, 100);
}
targetPosition = clampF(minPosition, targetPosition, maxPosition);
etbCurrentAdjustedTarget = targetPosition;
#if EFI_TUNER_STUDIO
if (m_function == DC_Throttle1) {
engine->outputChannels.etbTarget = targetPosition;
}
#endif // EFI_TUNER_STUDIO
return targetPosition;
}
void EtbController::setLuaAdjustment(float adjustment) {
luaAdjustment = adjustment;
m_luaAdjustmentTimer.reset();
}
float EtbController::getLuaAdjustment() const {
// If the lua position hasn't been set in 0.2 second, don't adjust!
// This avoids a stuck throttle due to hung/rogue/etc Lua script
if (m_luaAdjustmentTimer.getElapsedSeconds() > 0.2f) {
return 0;
} else {
return luaAdjustment;
}
}
percent_t EtbController2::getThrottleTrim(float rpm, percent_t targetPosition) const {
return m_throttle2Trim.getValue(rpm, targetPosition);
}
expected<percent_t> EtbController::getOpenLoop(percent_t target) {
// Don't apply open loop for wastegate/idle valve, only real ETB
if (m_function != DC_Wastegate
&& m_function != DC_IdleValve) {
etbFeedForward = interpolate2d(target, config->etbBiasBins, config->etbBiasValues);
} else {
etbFeedForward = 0;
}
return etbFeedForward;
}
expected<percent_t> EtbController::getClosedLoopAutotune(percent_t target, percent_t actualThrottlePosition) {
// Estimate gain at current position - this should be well away from the spring and in the linear region
// GetSetpoint sets this to 50%
bool isPositive = actualThrottlePosition > target;
float autotuneAmplitude = 20;
// End of cycle - record & reset
if (!isPositive && m_lastIsPositive) {
efitick_t now = getTimeNowNt();
// Determine period
float tu = NT2US((float)(now - m_cycleStartTime)) / 1e6;
m_cycleStartTime = now;
// Determine amplitude
float a = m_maxCycleTps - m_minCycleTps;
// Filter - it's pretty noisy since the ultimate period is not very many loop periods
constexpr float alpha = 0.05;
m_a = alpha * a + (1 - alpha) * m_a;
m_tu = alpha * tu + (1 - alpha) * m_tu;
// Reset bounds
m_minCycleTps = 100;
m_maxCycleTps = 0;
// Math is for ÅströmHägglund (relay) auto tuning
// https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume5issue2/hornsey
// Publish to TS state
#if EFI_TUNER_STUDIO
// Amplitude of input (duty cycle %)
float b = 2 * autotuneAmplitude;
// Ultimate gain per A-H relay tuning rule
float ku = 4 * b / (CONST_PI * m_a);
// The multipliers below are somewhere near the "no overshoot"
// and "some overshoot" flavors of the Ziegler-Nichols method
// Kp
float kp = 0.35f * ku;
float ki = 0.25f * ku / m_tu;
float kd = 0.08f * ku * m_tu;
// Every 5 cycles (of the throttle), cycle to the next value
if (m_autotuneCounter >= 5) {
m_autotuneCounter = 0;
m_autotuneCurrentParam = (m_autotuneCurrentParam + 1) % 3; // three ETB calibs: P-I-D
}
m_autotuneCounter++;
// Multiplex 3 signals on to the {mode, value} format
engine->outputChannels.calibrationMode = (uint8_t)static_cast<TsCalMode>((uint8_t)TsCalMode::EtbKp + m_autotuneCurrentParam);
switch (m_autotuneCurrentParam) {
case 0:
engine->outputChannels.calibrationValue = kp;
break;
case 1:
engine->outputChannels.calibrationValue = ki;
break;
case 2:
engine->outputChannels.calibrationValue = kd;
break;
}
// Also output to debug channels if configured
if (engineConfiguration->debugMode == DBG_ETB_AUTOTUNE) {
// a - amplitude of output (TPS %)
engine->outputChannels.debugFloatField1 = m_a;
// b - amplitude of input (Duty cycle %)
engine->outputChannels.debugFloatField2 = b;
// Tu - oscillation period (seconds)
engine->outputChannels.debugFloatField3 = m_tu;
engine->outputChannels.debugFloatField4 = ku;
engine->outputChannels.debugFloatField5 = kp;
engine->outputChannels.debugFloatField6 = ki;
engine->outputChannels.debugFloatField7 = kd;
}
#endif
}
m_lastIsPositive = isPositive;
// Find the min/max of each cycle
if (actualThrottlePosition < m_minCycleTps) {
m_minCycleTps = actualThrottlePosition;
}
if (actualThrottlePosition > m_maxCycleTps) {
m_maxCycleTps = actualThrottlePosition;
}
// Bang-bang control the output to induce oscillation
return autotuneAmplitude * (isPositive ? -1 : 1);
}
expected<percent_t> EtbController::getClosedLoop(percent_t target, percent_t observation) {
if (m_shouldResetPid) {
m_pid.reset();
m_shouldResetPid = false;
}
if (m_isAutotune) {
return getClosedLoopAutotune(target, observation);
} else {
// Check that we're not over the error limit
etbIntegralError = m_errorAccumulator.accumulate(target - observation);
// Allow up to 10 percent-seconds of error
if (etbIntegralError > 10.0f) {
// TODO: figure out how to handle uncalibrated ETB
//getLimpManager()->reportEtbProblem();
}
// Normal case - use PID to compute closed loop part
return m_pid.getOutput(target, observation, etbPeriodSeconds);
}
}
void EtbController::setOutput(expected<percent_t> outputValue) {
#if EFI_TUNER_STUDIO
// Only report first-throttle stats
if (m_function == DC_Throttle1) {
engine->outputChannels.etb1DutyCycle = outputValue.value_or(0);
}
#endif
if (!m_motor) {
return;
}
// If not ETB, or ETB is allowed, output is valid, and we aren't paused, output to motor.
if (!isEtbMode() ||
(getLimpManager()->allowElectronicThrottle()
&& outputValue
&& !engineConfiguration->pauseEtbControl)) {
m_motor->enable();
m_motor->set(ETB_PERCENT_TO_DUTY(outputValue.Value));
} else {
// Otherwise disable the motor.
m_motor->disable("setOutput");
}
}
bool EtbController::checkStatus() {
#if EFI_TUNER_STUDIO
// Only debug throttle #1
if (m_function == DC_Throttle1) {
m_pid.postState(engine->outputChannels.etbStatus);
} else if (m_function == DC_Wastegate) {
m_pid.postState(engine->outputChannels.wastegateDcStatus);
}
#endif /* EFI_TUNER_STUDIO */
if (!isEtbMode()) {
// no validation for h-bridge or idle mode
return true;
}
// ETB-specific code belo. The whole mix-up between DC and ETB is shameful :(
m_pid.iTermMin = engineConfiguration->etb_iTermMin;
m_pid.iTermMax = engineConfiguration->etb_iTermMax;
// Only allow autotune with stopped engine, and on the first throttle
// Update local state about autotune
m_isAutotune = Sensor::getOrZero(SensorType::Rpm) == 0
&& engine->etbAutoTune
&& m_function == DC_Throttle1;
bool shouldCheckSensorFunction = engine->module<SensorChecker>()->analogSensorsShouldWork();
if (!m_isAutotune && shouldCheckSensorFunction) {
bool isTpsError = !Sensor::get(m_positionSensor).Valid;
// If we have an error that's new, increment the counter
if (isTpsError && !hadTpsError) {
etbTpsErrorCounter++;
}
hadTpsError = isTpsError;
bool isPpsError = !Sensor::get(SensorType::AcceleratorPedal).Valid;
// If we have an error that's new, increment the counter
if (isPpsError && !hadPpsError) {
etbPpsErrorCounter++;
}
hadPpsError = isPpsError;
} else {
// Either sensors are expected to not work, or autotune is running, so reset the error counter
etbTpsErrorCounter = 0;
etbPpsErrorCounter = 0;
}
TpsState localReason = TpsState::None;
if (etbTpsErrorCounter > 50) {
localReason = TpsState::IntermittentTps;
#if EFI_SHAFT_POSITION_INPUT
} else if (engineConfiguration->disableEtbWhenEngineStopped && !engine->triggerCentral.engineMovedRecently()) {
localReason = TpsState::EngineStopped;
#endif // EFI_SHAFT_POSITION_INPUT
} else if (etbPpsErrorCounter > 50) {
localReason = TpsState::IntermittentPps;
} else if (engine->engineState.lua.luaDisableEtb) {
localReason = TpsState::Lua;
}
etbErrorCode = (int8_t)localReason;
return localReason == TpsState::None;
}
void EtbController::update() {
#if !EFI_UNIT_TEST
// If we didn't get initialized, fail fast
if (!m_motor) {
return;
}
#endif // EFI_UNIT_TEST
if (!cisnan(directPwmValue)) {
m_motor->set(directPwmValue);
etbErrorCode = (int8_t)TpsState::Manual;
return;
}
bool isOk = checkStatus();
if (!isOk) {
// If engine is stopped and so configured, skip the ETB update entirely
// This is quieter and pulls less power than leaving it on all the time
m_motor->disable("etb status");
return;
}
auto output = ClosedLoopController::update();
if (!output) {
return;
}
checkOutput(output.Value);
}
void EtbController::checkOutput(percent_t output) {
etbDutyAverage = m_dutyAverage.average(absF(output));
etbDutyRateOfChange = m_dutyRocAverage.average(absF(output - prevOutput));
prevOutput = output;
float integrator = absF(m_pid.getIntegration());
auto integratorLimit = engineConfiguration->etbJamIntegratorLimit;
if (integratorLimit != 0) {
auto nowNt = getTimeNowNt();
if (integrator > integratorLimit) {
if (m_jamDetectTimer.hasElapsedSec(engineConfiguration->etbJamTimeout)) {
// ETB is jammed!
jamDetected = true;
// TODO: do something about it!
}
} else {
m_jamDetectTimer.reset(getTimeNowNt());
jamDetected = false;
}
jamTimer = m_jamDetectTimer.getElapsedSeconds(nowNt);
}
}
void EtbController::autoCalibrateTps() {
// Only auto calibrate throttles
if (m_function == DC_Throttle1 || m_function == DC_Throttle2) {
m_isAutocal = true;
}
}
#if !EFI_UNIT_TEST
/**
* Things running on a timer (instead of a thread) don't participate it the RTOS's thread priority system,
* and operate essentially "first come first serve", which risks starvation.
* Since ETB is a safety critical device, we need the hard RTOS guarantee that it will be scheduled over other less important tasks.
*/
#include "periodic_thread_controller.h"
#else
#define chThdSleepMilliseconds(x) {}
#endif // EFI_UNIT_TEST
#include <utility>
template <typename TBase>
struct EtbImpl final : public TBase {
template <typename... TArgs>
EtbImpl(TArgs&&... args) : TBase(std::forward<TArgs>(args)...) { }
void update() override {
#if EFI_TUNER_STUDIO
if (TBase::m_isAutocal) {
// Don't allow if engine is running!
if (Sensor::getOrZero(SensorType::Rpm) > 0) {
TBase::m_isAutocal = false;
return;
}
auto motor = TBase::getMotor();
if (!motor) {
TBase::m_isAutocal = false;
return;
}
auto myFunction = TBase::getFunction();
// First grab open
motor->set(0.5f);
motor->enable();
chThdSleepMilliseconds(1000);
float primaryMax = Sensor::getRaw(functionToTpsSensorPrimary(myFunction));
float secondaryMax = Sensor::getRaw(functionToTpsSensorSecondary(myFunction));
// Let it return
motor->set(0);
chThdSleepMilliseconds(200);
// Now grab closed
motor->set(-0.5f);
chThdSleepMilliseconds(1000);
float primaryMin = Sensor::getRaw(functionToTpsSensorPrimary(myFunction));
float secondaryMin = Sensor::getRaw(functionToTpsSensorSecondary(myFunction));
// Finally disable and reset state
motor->disable("autotune");
// Check that the calibrate actually moved the throttle
if (absF(primaryMax - primaryMin) < 0.5f) {
firmwareError(OBD_TPS_Configuration, "Auto calibrate failed, check your wiring!\r\nClosed voltage: %.1fv Open voltage: %.1fv", primaryMin, primaryMax);
TBase::m_isAutocal = false;
return;
}
// Write out the learned values to TS, waiting briefly after setting each to let TS grab it
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMax(myFunction);
engine->outputChannels.calibrationValue = primaryMax * TPS_TS_CONVERSION;
chThdSleepMilliseconds(500);
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMin(myFunction);
engine->outputChannels.calibrationValue = primaryMin * TPS_TS_CONVERSION;
chThdSleepMilliseconds(500);
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMax(myFunction);
engine->outputChannels.calibrationValue = secondaryMax * TPS_TS_CONVERSION;
chThdSleepMilliseconds(500);
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMin(myFunction);
engine->outputChannels.calibrationValue = secondaryMin * TPS_TS_CONVERSION;
chThdSleepMilliseconds(500);
engine->outputChannels.calibrationMode = (uint8_t)TsCalMode::None;
TBase::m_isAutocal = false;
return;
}
#endif /* EFI_TUNER_STUDIO */
TBase::update();
}
};
// real implementation (we mock for some unit tests)
static EtbImpl<EtbController1> etb1;
static EtbImpl<EtbController2> etb2(throttle2TrimTable);
static_assert(ETB_COUNT == 2);
static EtbController* etbControllers[] = { &etb1, &etb2 };
#if !EFI_UNIT_TEST
struct DcThread final : public PeriodicController<512> {
DcThread() : PeriodicController("DC", PRIO_ETB, ETB_LOOP_FREQUENCY) {}
void PeriodicTask(efitick_t) override {
// Simply update all controllers
for (int i = 0 ; i < ETB_COUNT; i++) {
etbControllers[i]->update();
}
}
};
static DcThread dcThread CCM_OPTIONAL;
#endif // EFI_UNIT_TEST
static void showEtbInfo() {
#if EFI_PROD_CODE
efiPrintf("etbAutoTune=%d", engine->etbAutoTune);
efiPrintf("TPS=%.2f", Sensor::getOrZero(SensorType::Tps1));
efiPrintf("ETB1 duty=%.2f freq=%d",
engine->outputChannels.etb1DutyCycle,
engineConfiguration->etbFreq);
efiPrintf("ETB freq=%d",
engineConfiguration->etbFreq);
for (int i = 0; i < ETB_COUNT; i++) {
efiPrintf("ETB%d", i);
efiPrintf(" dir1=%s", hwPortname(engineConfiguration->etbIo[i].directionPin1));
efiPrintf(" dir2=%s", hwPortname(engineConfiguration->etbIo[i].directionPin2));
efiPrintf(" control=%s", hwPortname(engineConfiguration->etbIo[i].controlPin));
efiPrintf(" disable=%s", hwPortname(engineConfiguration->etbIo[i].disablePin));
showDcMotorInfo(i);
}
#endif /* EFI_PROD_CODE */
}
void etbPidReset() {
for (int i = 0 ; i < ETB_COUNT; i++) {
if (auto controller = engine->etbControllers[i]) {
controller->reset();
}
}
}
#if !EFI_UNIT_TEST
/**
* At the moment there are TWO ways to use this
* set_etb_duty X
* set etb X
* manual duty cycle control without PID. Percent value from 0 to 100
*/
void setThrottleDutyCycle(percent_t level) {
efiPrintf("setting ETB duty=%f%%", level);
if (cisnan(level)) {
directPwmValue = NAN;
return;
}
float dc = ETB_PERCENT_TO_DUTY(level);
directPwmValue = dc;
for (int i = 0 ; i < ETB_COUNT; i++) {
setDcMotorDuty(i, dc);
}
efiPrintf("duty ETB duty=%f", dc);
}
static void setEtbFrequency(int frequency) {
engineConfiguration->etbFreq = frequency;
for (int i = 0 ; i < ETB_COUNT; i++) {
setDcMotorFrequency(i, frequency);
}
}
static void etbReset() {
efiPrintf("etbReset");
for (int i = 0 ; i < ETB_COUNT; i++) {
setDcMotorDuty(i, 0);
}
etbPidReset();
}
#endif /* EFI_PROD_CODE */
/**
* set etb_p X
*/
void setEtbPFactor(float value) {
engineConfiguration->etb.pFactor = value;
etbPidReset();
showEtbInfo();
}
/**
* set etb_i X
*/
void setEtbIFactor(float value) {
engineConfiguration->etb.iFactor = value;
etbPidReset();
showEtbInfo();
}
/**
* set etb_d X
*/
void setEtbDFactor(float value) {
engineConfiguration->etb.dFactor = value;
etbPidReset();
showEtbInfo();
}
/**
* set etb_o X
*/
void setEtbOffset(int value) {
engineConfiguration->etb.offset = value;
etbPidReset();
showEtbInfo();
}
void etbAutocal(size_t throttleIndex) {
if (throttleIndex >= ETB_COUNT) {
return;
}
if (auto etb = engine->etbControllers[throttleIndex]) {
etb->autoCalibrateTps();
}
}
/**
* This specific throttle has default position of about 7% open
*/
static const float boschBiasBins[] = {
0, 1, 5, 7, 14, 65, 66, 100
};
static const float boschBiasValues[] = {
-15, -15, -10, 0, 19, 20, 26, 28
};
void setBoschVAGETB() {
// set tps_min 890
engineConfiguration->tpsMin = 890; // convert 12to10 bit (ADC/4)
// set tps_max 70
engineConfiguration->tpsMax = 70; // convert 12to10 bit (ADC/4)
engineConfiguration->tps1SecondaryMin = 102;
engineConfiguration->tps1SecondaryMax = 891;
engineConfiguration->etb.pFactor = 5.12;
engineConfiguration->etb.iFactor = 47;
engineConfiguration->etb.dFactor = 0.088;
engineConfiguration->etb.offset = 0;
}
void setBoschVNH2SP30Curve() {
copyArray(config->etbBiasBins, boschBiasBins);
copyArray(config->etbBiasValues, boschBiasValues);
}
void setDefaultEtbParameters() {
engineConfiguration->etbIdleThrottleRange = 5;
engineConfiguration->etbExpAverageLength = 50;
engineConfiguration->etbRocExpAverageLength = 50;
setLinearCurve(config->pedalToTpsPedalBins, /*from*/0, /*to*/100, 1);
setLinearCurve(config->pedalToTpsRpmBins, /*from*/0, /*to*/8000, 1);
for (int pedalIndex = 0;pedalIndex<PEDAL_TO_TPS_SIZE;pedalIndex++) {
for (int rpmIndex = 0;rpmIndex<PEDAL_TO_TPS_SIZE;rpmIndex++) {
config->pedalToTpsTable[pedalIndex][rpmIndex] = config->pedalToTpsPedalBins[pedalIndex];
}
}
// Default is to run each throttle off its respective hbridge
engineConfiguration->etbFunctions[0] = DC_Throttle1;
engineConfiguration->etbFunctions[1] = DC_Throttle2;
engineConfiguration->etbFreq = DEFAULT_ETB_PWM_FREQUENCY;
// voltage, not ADC like with TPS
setPPSCalibration(0, 5, 5, 0);
engineConfiguration->etb = {
1, // Kp
10, // Ki
0.05, // Kd
0, // offset
0, // Update rate, unused
-100, 100 // min/max
};
engineConfiguration->etb_iTermMin = -30;
engineConfiguration->etb_iTermMax = 30;
}
void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration) {
for (int i = 0; i < ETB_COUNT; i++) {
etbControllers[i]->onConfigurationChange(&previousConfiguration->etb);
}
}
static const float defaultBiasBins[] = {
0, 1, 2, 4, 7, 98, 99, 100
};
static const float defaultBiasValues[] = {
-20, -18, -17, 0, 20, 21, 22, 25
};
void setDefaultEtbBiasCurve() {
copyArray(config->etbBiasBins, defaultBiasBins);
copyArray(config->etbBiasValues, defaultBiasValues);
}
void unregisterEtbPins() {
// todo: we probably need an implementation here?!
}
static pid_s* getPidForDcFunction(dc_function_e function) {
switch (function) {
case DC_Wastegate: return &engineConfiguration->etbWastegatePid;
default: return &engineConfiguration->etb;
}
}
void doInitElectronicThrottle() {
bool hasPedal = Sensor::hasSensor(SensorType::AcceleratorPedalPrimary);
#if EFI_UNIT_TEST
printf("doInitElectronicThrottle %s\n", boolToString(hasPedal));
#endif // EFI_UNIT_TEST
// these status flags are consumed by TS see rusefi.input TODO should those be outputs/live data not configuration?!
engineConfiguration->etb1configured = engineConfiguration->etb2configured = false;
// todo: technical debt: we still have DC motor code initialization in ETB-specific file while DC motors are used not just as ETB
// like DC motor wastegate code flow should probably NOT go through electronic_throttle.cpp right?
// todo: rename etbFunctions to something-without-etb for same reason?
for (int i = 0 ; i < ETB_COUNT; i++) {
auto func = engineConfiguration->etbFunctions[i];
if (func == DC_None) {
// do not touch HW pins if function not selected, this way Lua can use DC motor hardware pins directly
continue;
}
auto motor = initDcMotor("ETB disable",
engineConfiguration->etbIo[i], i, engineConfiguration->etb_use_two_wires);
auto controller = engine->etbControllers[i];
if (!controller) {
continue;
}
auto pid = getPidForDcFunction(func);
bool dcConfigured = controller->init(func, motor, pid, &pedal2tpsMap, hasPedal);
bool etbConfigured = dcConfigured && controller->isEtbMode();
if (i == 0) {
engineConfiguration->etb1configured = etbConfigured;
} else if (i == 1) {
engineConfiguration->etb2configured = etbConfigured;
}
}
if (!engineConfiguration->etb1configured && !engineConfiguration->etb2configured) {
// It's not valid to have a PPS without any ETBs - check that at least one ETB was enabled along with the pedal
if (hasPedal) {
firmwareError(OBD_PCM_Processor_Fault, "A pedal position sensor was configured, but no electronic throttles are configured.");
}
}
#if 0 && ! EFI_UNIT_TEST
percent_t startupThrottlePosition = getTPS();
if (absF(startupThrottlePosition - engineConfiguration->etbNeutralPosition) > STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD) {
/**
* Unexpected electronic throttle start-up position is worth a critical error
*/
firmwareError(OBD_Throttle_Actuator_Control_Range_Performance_Bank_1, "startup ETB position %.2f not %d",
startupThrottlePosition,
engineConfiguration->etbNeutralPosition);
startupPositionError = true;
}
#endif /* EFI_UNIT_TEST */
#if !EFI_UNIT_TEST
static bool started = false;
if (started == false) {
dcThread.start();
started = true;
}
#endif
}
void initElectronicThrottle() {
if (hasFirmwareError()) {
return;
}
for (int i = 0; i < ETB_COUNT; i++) {
engine->etbControllers[i] = etbControllers[i];
}
#if EFI_PROD_CODE
addConsoleAction("etbinfo", showEtbInfo);
addConsoleAction("etbreset", etbReset);
addConsoleActionI("etb_freq", setEtbFrequency);
// this command is useful for real hardware test with known cheap hardware
addConsoleAction("etb_test_hw", [](){
set18919_AM810_pedal_position_sensor();
});
#endif /* EFI_PROD_CODE */
pedal2tpsMap.init(config->pedalToTpsTable, config->pedalToTpsPedalBins, config->pedalToTpsRpmBins);
throttle2TrimTable.init(config->throttle2TrimTable, config->throttle2TrimTpsBins, config->throttle2TrimRpmBins);
doInitElectronicThrottle();
}
void setEtbIdlePosition(percent_t pos) {
for (int i = 0; i < ETB_COUNT; i++) {
if (auto etb = engine->etbControllers[i]) {
etb->setIdlePosition(pos);
}
}
}
void setEtbWastegatePosition(percent_t pos) {
for (int i = 0; i < ETB_COUNT; i++) {
if (auto etb = engine->etbControllers[i]) {
etb->setWastegatePosition(pos);
}
}
}
void setEtbLuaAdjustment(percent_t pos) {
for (int i = 0; i < ETB_COUNT; i++) {
if (auto etb = engine->etbControllers[i]) {
etb->setLuaAdjustment(pos);
}
}
}
void set18919_AM810_pedal_position_sensor() {
// todo use setPPSCalibration(0.1, 4.3, 0.1, 1.96); once we have https://github.com/rusefi/rusefi/issues/5056
setPPSCalibration(0.1, 4.5, 0.1, 2.2);
}
void setToyota89281_33010_pedal_position_sensor() {
setPPSCalibration(0, 4.1, 0.73, 4.9);
}
void setHitachiEtbCalibration() {
setToyota89281_33010_pedal_position_sensor();
setHitachiEtbBiasBins();
engineConfiguration->etb.pFactor = 2.7999;
engineConfiguration->etb.iFactor = 25.5;
engineConfiguration->etb.dFactor = 0.053;
engineConfiguration->etb.offset = 0.0;
engineConfiguration->etb.periodMs = 5.0;
engineConfiguration->etb.minValue = -100.0;
engineConfiguration->etb.maxValue = 100.0;
// Nissan 60mm throttle
engineConfiguration->tpsMin = engineConfiguration->tps2Min = 113;
engineConfiguration->tpsMax = engineConfiguration->tps2Max = 846;
engineConfiguration->tps1SecondaryMin = engineConfiguration->tps2SecondaryMin = 897;
engineConfiguration->tps1SecondaryMax = engineConfiguration->tps2SecondaryMax = 161;
}
void setProteusHitachiEtbDefaults() {
#if HW_PROTEUS
setHitachiEtbCalibration();
// EFI_ADC_12: "Analog Volt 3"
engineConfiguration->tps1_2AdcChannel = PROTEUS_IN_TPS1_2;
// EFI_ADC_13: "Analog Volt 4"
engineConfiguration->tps2_1AdcChannel = PROTEUS_IN_TPS2_1;
// EFI_ADC_0: "Analog Volt 5"
engineConfiguration->tps2_2AdcChannel = PROTEUS_IN_ANALOG_VOLT_5;
setPPSInputs(PROTEUS_IN_ANALOG_VOLT_6, PROTEUS_IN_PPS2);
#endif // HW_PROTEUS
}
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
template<>
const electronic_throttle_s* getLiveData(size_t idx) {
#if EFI_ELECTRONIC_THROTTLE_BODY
if (idx >= efi::size(etbControllers)) {
return nullptr;
}
return etbControllers[idx];
#else
return nullptr;
#endif
}