rusefi/firmware/util/containers/table_helper.h

196 lines
6.1 KiB
C++

/**
* @file table_helper.h
*
* @date Jul 6, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
#include <math.h>
#include "interpolation.h"
#include "efilib.h"
#include "efi_ratio.h"
#include "scaled_channel.h"
// popular left edge of CLT-based correction curves
#define CLT_CURVE_RANGE_FROM -40
class ValueProvider3D {
public:
virtual float getValue(float xColumn, float yRow) const = 0;
};
/**
* this helper class brings together 3D table with two 2D axis curves
*/
template<int TColNum, int TRowNum, typename TValue, typename TColumn, typename TRow>
class Map3D : public ValueProvider3D {
public:
template <typename TValueInit, typename TRowInit, typename TColumnInit>
void init(TValueInit (&table)[TRowNum][TColNum],
const TRowInit (&rowBins)[TRowNum], const TColumnInit (&columnBins)[TColNum]) {
// This splits out here so that we don't need one overload of init per possible combination of table/rows/columns types/dimensions
// Overload resolution figures out the correct versions of the functions below to call, some of which have assertions about what's allowed
initValues(table);
initRows(rowBins);
initCols(columnBins);
}
float getValue(float xColumn, float yRow) const final {
if (!m_values) {
// not initialized, return 0
return 0;
}
return interpolate3d(*m_values,
*m_rowBins, yRow * m_rowMult,
*m_columnBins, xColumn * m_colMult) *
m_valueMult;
}
void setAll(TValue value) {
efiAssertVoid(CUSTOM_ERR_6573, m_values, "map not initialized");
for (size_t r = 0; r < TRowNum; r++) {
for (size_t c = 0; c < TColNum; c++) {
(*m_values)[r][c] = value / m_valueMult;
}
}
}
private:
template <int TMult, int TDiv>
void initValues(scaled_channel<TValue, TMult, TDiv> (&table)[TRowNum][TColNum]) {
m_values = reinterpret_cast<TValue (*)[TRowNum][TColNum]>(&table);
m_valueMult = 1 / efi::ratio<TMult, TDiv>::asFloat();
}
void initValues(TValue (&table)[TRowNum][TColNum]) {
m_values = &table;
m_valueMult = 1;
}
template <int TRowMult, int TRowDiv>
void initRows(const scaled_channel<TRow, TRowMult, TRowDiv> (&rowBins)[TRowNum]) {
m_rowBins = reinterpret_cast<const TRow (*)[TRowNum]>(&rowBins);
m_rowMult = efi::ratio<TRowMult, TRowDiv>::asFloat();
}
void initRows(const TRow (&rowBins)[TRowNum]) {
m_rowBins = &rowBins;
m_rowMult = 1;
}
template <int TColMult, int TColDiv>
void initCols(const scaled_channel<TColumn, TColMult, TColDiv> (&columnBins)[TColNum]) {
m_columnBins = reinterpret_cast<const TColumn (*)[TColNum]>(&columnBins);
m_colMult = efi::ratio<TColMult, TColDiv>::asFloat();
}
void initCols(const TColumn (&columnBins)[TColNum]) {
m_columnBins = &columnBins;
m_colMult = 1;
}
static size_t getIndexForCoordinates(size_t row, size_t column) {
// Index 0 is bottom left corner
// Index TColNum - 1 is bottom right corner
// indicies count right, then up
return row * TColNum + column;
}
TValue getValueAtPosition(size_t row, size_t column) const {
auto idx = getIndexForCoordinates(row, column);
return m_values[idx];
}
// TODO: should be const
/*const*/ TValue (*m_values)[TRowNum][TColNum] = nullptr;
const TRow (*m_rowBins)[TRowNum] = nullptr;
const TColumn (*m_columnBins)[TColNum] = nullptr;
float m_rowMult = 1;
float m_colMult = 1;
float m_valueMult = 1;
};
typedef Map3D<FUEL_RPM_COUNT, FUEL_LOAD_COUNT, uint8_t, uint16_t, uint16_t> lambda_Map3D_t;
typedef Map3D<FUEL_RPM_COUNT, FUEL_LOAD_COUNT, uint16_t, uint16_t, uint16_t> fuel_Map3D_t;
typedef Map3D<BARO_CORR_SIZE, BARO_CORR_SIZE, float, float, float> baroCorr_Map3D_t;
typedef Map3D<PEDAL_TO_TPS_SIZE, PEDAL_TO_TPS_SIZE, uint8_t, uint8_t, uint8_t> pedal2tps_t;
typedef Map3D<BOOST_RPM_COUNT, BOOST_LOAD_COUNT, uint8_t, uint8_t, uint8_t> boostOpenLoop_Map3D_t;
typedef Map3D<BOOST_RPM_COUNT, BOOST_LOAD_COUNT, uint8_t, uint8_t, uint8_t> boostClosedLoop_Map3D_t;
typedef Map3D<GPPWM_RPM_COUNT, GPPWM_LOAD_COUNT, uint8_t, uint8_t, uint8_t> gppwm_Map3D_t;
typedef Map3D<FUEL_RPM_COUNT, FUEL_LOAD_COUNT, uint16_t, uint16_t, uint16_t> mapEstimate_Map3D_t;
/**
* @param precision for example '0.1' for one digit fractional part. Default to 0.01, two digits.
*/
template<typename TValue, int TSize>
void setLinearCurve(TValue (&array)[TSize], float from, float to, float precision = 0.01f) {
for (int i = 0; i < TSize; i++) {
float value = interpolateMsg("setLinearCurve", 0, from, TSize - 1, to, i);
/**
* rounded values look nicer, also we want to avoid precision mismatch with Tuner Studio
*/
array[i] = efiRound(value, precision);
}
}
template<typename TValue, int TSize>
void setArrayValues(TValue (&array)[TSize], float value) {
for (int i = 0; i < TSize; i++) {
array[i] = value;
}
}
template <typename TElement, typename VElement, size_t N, size_t M>
constexpr void setTable(TElement (&dest)[N][M], const VElement value) {
for (size_t n = 0; n < N; n++) {
for (size_t m = 0; m < M; m++) {
dest[n][m] = value;
}
}
}
template <typename TDest, typename TSource, size_t N, size_t M>
constexpr void copyTable(TDest (&dest)[N][M], const TSource (&source)[N][M], float multiply = 1.0f) {
for (size_t n = 0; n < N; n++) {
for (size_t m = 0; m < M; m++) {
dest[n][m] = source[n][m] * multiply;
}
}
}
// specialization that can use memcpy when src and dest types match
template <typename TDest, size_t N, size_t M>
constexpr void copyTable(scaled_channel<TDest, 1, 1> (&dest)[N][M], const TDest (&source)[N][M]) {
memcpy(dest, source, N * M * sizeof(TDest));
}
template <typename TDest, size_t N, size_t M>
constexpr void copyTable(TDest (&dest)[N][M], const TDest (&source)[N][M]) {
memcpy(dest, source, N * M * sizeof(TDest));
}
template<typename kType>
void setRpmBin(kType array[], int size, float idleRpm, float topRpm) {
array[0] = idleRpm - 150;
int rpmStep = (int)(efiRound((topRpm - idleRpm) / (size - 2), 50) - 150);
for (int i = 1; i < size - 1;i++)
array[i] = idleRpm + rpmStep * (i - 1);
array[size - 1] = topRpm;
}
/**
* initialize RPM table axis using default RPM range
*/
template<typename kType>
void setRpmTableBin(kType array[], int size) {
setRpmBin(array, size, 800, 7000);
}